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Latent network model Residual network model

Epskamp, S., Rhemtulla, M. T., & Borsboom, D. (2017). 

Generalized Network Psychometrics: Combining Network and 

Latent Variable Models. Psychometrika, 82(4), 904–927.



Model fit & Multi-group analysis

Kan, K. J., van der Maas, H. L., & Levine, S. Z. (2019). Extending psychometric network 

analysis: Empirical evidence against g in favor of mutualism?. Intelligence, 73, 52-62.

Epskamp, S., Rhemtulla, M., & 
Borsboom, D. (2017). Generalized 

network pschometrics: Combining 

network and latent variable 
models. Psychometrika, 82(4), 904-927.



A comprehensive overview of research on missing 

data analysis in network psychometrics:
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Models

psychonetrics

Output Estimators

ü Cholesky decomposition

ü Covariance matrix

ü Gaussian graphical 

model

ü Latent network model

• (CFA)

ü Residual Network model

• (SEM)

ü Graphical VAR for time-

series

o Graphical VAR for panel 

data

o Structural VAR

o Ising model

o Fused latent and 

graphical IRT

ü Fit indices

ü Modification indices

ü Parameter estimates

ü Standard errors

ü Model comparison

o Markdown document

o Logbook / graph

Techniques

ü MI model search

ü Significance pruning

ü Multi-group models

ü Equality constrains

o GIMME-like model 

search

o Meta-analysis

ü Maximum likelihood 

(summary statistics)

ü Full-information 

maximum likelihood

• Toeplitz for GVAR

o Raw time-series GVAR

ü Least-squares

o (diagonally) weighted 

least squares

o Robust ML estimation

Unsta
ble alpha versi

on:

gith
ub.com/S

achaEpskamp/p
sychonetri

cs





Frequentism versus Bayes

• Disclaimer: Artwork might not accurately 

represent frequentism or Bayesianism

– Source: https://www.bayesianspectacles.org/, powered by 

https://jasp-stats.org/

• psychonetrics will be purely frequentist, 

implementing many maximum likelihood 

estimators

• There is also promising Bayesian work in this area

– BGGM package by Donald Willaims

(https://psyarxiv.com/x8dpr/)

– Bdgraph package by Reza Mohammadi
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Confirmatory fit of GGMs
library("parSim")
sims <- parSim(

nSample = c(100,250,1000,2500),

randomness = c(0,0.1,0.25,0.5,1),
nNode = 8,

reps = 100,
nCores = 8,

expression = {

library("bootnet")
library("psychonetrics")

library(”dplyr”)
# Simulate true model:

trueNet <- genGGM(nNode,p = randomness)

# Simulate data:
Data <- ggmGenerator()(nSample,trueNet)

# Model to fit (chain):
adj <- 1 * (genGGM(nNode) != 0)  

# Form psychonetrics model:

mod <- ggm(Data, omega = adj)
# Run model:

mod <- mod %>% 
runmodel(verbose=FALSE, addMIs=FALSE)

# Return fit indices:

mod@fitmeasures
}

)

Fitted model

Code

True model

Randomness
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Simulation study:

• 100 repetitions in each condition

• Sample size 100, 250, 1000 & 2500

• Randomness 0, 0.1, 0.25, 0.5, 1

• Chi-square test and RMSEA
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Varying randomness from 0 (true model) to 1 (random model)

chi−square test p−values

Uniform p-values for true model High power to reject false model
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Varying randomness from 0 (true model) to 1 (random model).

Root mean square error of approximation

RMSEA < 0.05 for true model
RMSEA > 0.05 for false model



Missing data in graphical VAR models
Simulation setup:

• 100 repetitions in each condition

• 75 time points

• 0%, 10% or 25% missingness (at random)
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Estimation

• graphicalVAR (LASSO) with BIC selection

• Psychonetrics FIML

• Stepup via MIs -> prune nonsig

Based on data of Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A. M., Riese, H., 

& Cramer, A. O. (2018). Personalized network modeling in psychopathology: The importance of contemporaneous 
and temporal connections. Clinical Psychological Science, 6(3), 416-427.



• graphicalVAR completely breaks down with missing 

data



• graphicalVAR completely breaks down with missing 

data

• FIML stepup estimation using psychometrics:

• Remains conservative

• Has decent performance still with high 

missingness



Measurement from a network 

perspective



Insomnia

P(yes) = 0.3

Tired
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Insomnia

P(yes) = 0.3

Tired

P(yes) = 0.5

Tense

P(yes) = 0.3

Insomnia

P(yes) = 0.5

Tired = yes

Tense

P(yes) = 0.1

Insomnia

P(yes) = 0.1

Tired = no

Tense

P(yes) = 0.5

Tired

= no

Are you tired?

yes               no

Are you tired?

no

Are you tense?

yes no



Simulation Study
• Empirical Ising model used as true 

structure

– Fried, E. I., Bockting, C., Arjadi, R., Borsboom, 

D., Tuerlinckx, F., Cramer, A., Epskamp, S., 

Amshoff, M., Carr, D., & Stroebe, M. (2015). 

From loss to loneliness: The relationship 

between bereavement and depressive 

symptoms. Journal of Abnormal Psychology, 

124, 256-265.

• Generate 1 case from true model

• Simulate adaptive assessment, using 

the true model, or IRT model based 

on N = 100,000 databank

• Each condition replicated 100 times
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Better predictive power for network based adaptive testing



Network Psychometrics
PHASE 2

• From exploratory expedition to confirmatory 

methodology

• Move towards fine-grained analysis

• Which edge can be added or removed?

• Does edge A – B differ between two groups?

• Does a theoretical model fit the data?

• Proper handling if missingness & nonnormality

• Network meta-analysis

• Network-based adaptive assessment



Thank you for your attention!

Publications & presentations: 

www.sachaepskamp.com

Facebook group:

facebook.com/groups/PsychologicalDynamics


