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In search for the holy grail

In psychology, we often want to know what the parents of variables are.

guilty taste

“a causal relation is a relation between two variables where, when changing
one variable, we expect to observe a change in the other variable”
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In search for the holy grail

If there are multiple generations of parents and children in a network, we
want to determine a node’s true parent(s)

guilty

disgust

taste
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From observational to experimental data
Observational data
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From observational to experimental data
Experimental data
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Turning experimental data into a network

A high conditional correlation occurs when the effect shown in the
observational data is also shown in the experimental data.

−0.2 −0.34

−0.55

0.69

−0.83

guilty

healthy

disgust

taste

How do we determine if the relation between “guilty“ and “taste“ is a
direct or indirect relation?
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Current Methods for causal networks
Transitive Reduction

Transitive reduction prunes relations whose conditional correlation do not
exceed some threshold:
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|0.20| & |0.34| < threshold
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Current Methods for causal networks
Transitive Reduction

Transitive reduction algorithms start out with a graph that contains
edges between variables whose conditional correlation exceed some
threshold

Edges are stepwise removed when alternative paths between those
variables satisfy certain conditions

DR-FFL1and TRANSWESD2are two methods that use transitive
reduction

DR-FFL and TRANSWESD vary in their usage of the conditional
correlation when pruning relations from a network

1Pinna et al. (2010) From knockouts to networks: Establishing direct cause-effect
relationships through graph analysis

2Klamt et al. (2010) TRANSWESD: inferring cellular networks with transitive
reduction
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Current Methods for causal networks
IC-algorithm

Based on work by Pearl3

Uses only observational data

Sometimes finds unlogical relations

3Pearl. Causality
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Difference between IC-algorithm and Transitive Reduction
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IC-algorithm DR-FFL/TRANSWESD
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Differences between IC-algorithm and Transitive Reduction

Pro Con

DR-FFL Creates single-subject
network

Causal network is always
unweighted

TRANSWESD Creates between-subject
network

Computation time is long
for reasonably sized net-
works

IC Computationally fast Uses solely observational
data
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Comparing methods

Sensitivity Specificity
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The future

Invariant prediction4is a new and promising method to infer causal
networks from experimental data.

Invariant prediction checks for each edge whether it holds across
experiments.
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3Meinshausen, et al. (2016) Methods for causal inference from gene perturbation
experiments and validation
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The future

We are currently working on a model that combines the advantages of
transitive reduction and invariant prediction
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