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Summary

In this thesis, we provide di↵erent perspectives on dynamical networks in psychology. The main
technique used here to infer networks is the multilevel vector autoregressive (VAR) model. In a
VAR model, the structure of the time-dependency within and between variables is explicitly modeled
through a set of regression equations. Using a multilevel extension of a VAR model allows one to
study the dynamics both within an individual as well as at group level.

The multilevel VAR model is further introduced in Chapter 2. In this study, longitudinal emotion
data from individuals with residual depressive symptoms were examined. Besides visualization of the
inferred networks, we also show how network structures can be further studied with network analyses,
such as centrality techniques.

Chapter 3 focuses on individual networks estimated with a multilevel VAR model. In this chapter,
the main goal is to study connectivity of individual emotion networks and their relation to neuroticism.
The results suggest that individuals with high levels of neuroticism have a denser emotion network
compared with their less neurotic peers.

In Chapter 4, we estimate the network of symptom dynamics that characterizes the Beck De-
pression Inventory-II (BDI-II), based on repeated administrations of the questionnaire to a group of
depressed individuals who participated in a treatment study. Since the BDI-II symptoms decreased
during treatment, the means changed, indicating changing dynamics. To account for this change in
dynamics a linear trend was included in the multilevel VAR model. Beyond visualization, we conduct
several network analyses, such as centrality and cluster analyses.

Chapter 5 lays the foundation for studying time-varying networks in psychology. Networks are
likely to change over time, due to for example therapy (see Chapter 4). Up until now there has been no
easy way to detect changing dynamics. With a time varying autoregressive (TV-AR) model, changes
in means and temporal dynamics can be easily identified and modeled, and therefore the model has
significant potential for studying changing dynamics in psychology.

Chapter 6 concerns psychological networks based on fMRI data. We use a new data driven tech-
nique, ancestral graphs (AGs), and compare it with a standard hypothesis driven method, Structural
Equation Modeling (SEM). In contrast to VAR models, network analysis in both SEM and AG is
based on the replication of the condition-specific trials and not on time-dependencies in time series
data. As AGs can test explicitly the assumption of missing regions (nodes) in the network, it leads in
general to more accurate network structures than the SEM method. Although currently mainly used
in fMRI research, AGs could also be a promising solution for estimating networks in other fields of
psychology, such as emotion research.

In Chapter 7, a more general theoretical perspective on psychological science is taken. Network
techniques are highly interdisciplinary and analyses done in physics seem to translate to other fields,
such as social or psychological science. Still, in measurement debates, physical measurement is seen
as largely disconnected from psychological measurement. We argue instead that there are interesting
parallels and connections between the two. In the last chapter, the discussion, a critical examination
of the general topic of the thesis is presented, ultimately answering the question: Dynamical networks
in psychology – more than a pretty picture?





Samenvatting

In deze thesis werpen we vanuit verschillende perspectieven een blik op dynamische netwerken in de
psychologie. De techniek die in deze thesis het meest wordt gebruikt om netwerken te schatten is het
multivariate autoregressieve (VAR) model. In een VAR model wordt de tijdsafhankelijkheid binnen
en tussen variabelen expliciet gemodelleerd met behulp van een set van regressievergelijkingen. Door
middel van een multilevel extensie van het VAR model kan niet alleen de intra-individuele dynamiek
bestudeerd worden, maar ook de dynamiek op groepslevel.

Het multilevel VAR model wordt verder gëıntroduceerd in hoofdstuk 2. Hier analyseren we met
behulp van het multilevel VAR model longitudinale emotiedata van personen met residuele depressieve
klachten. Naast het visualiseren van het verkregen netwerk worden netwerkanalyses zoals centraliteits-
analyses uitgevoerd.

In hoofdstuk 3 ligt de focus op individuele netwerken die ook weer verkregen zijn met een multilevel
VAR model. Het hoofddoel van dit hoofdstuk is het bestuderen van connectiviteit van individuele
emotienetwerken en de relatie tot neuroticisme: personen die hoog scoren op neuroticisme hebben een
dichter verbonden emotienetwerk in vergelijking met personen die lager scoren op neuroticisme.

In hoofdstuk 4 schatten we een netwerk dat de dynamiek van de symptomen van de Beck De-
pression Inventory-II (BDI-II) representeert. Data van de BDI-II symptomen werden verkregen in
een longitudinale studie waar personen met een depressie tijdens alle therapiesessies die ze ondergin-
gen deze vragenlijst invulden. Omdat de symptomen afnamen tijdens de behandeling, veranderde de
gemiddelde symptoomscore en daarmee de dynamiek. Voor deze verandering in dynamiek is gecor-
rigeerd door een lineaire trend op te nemen in het multilevel VAR model. Naast netwerkvisualisatie
zijn er verscheidene netwerkanalyses uitgevoerd zoals centraliteits- en clusteranalyses.

Hoofdstuk 5 e↵ent de weg voor het schatten van psychologische netwerken die veranderen gedurende
de tijd. Het is aannemelijk dat netwerken gedurende de tijd veranderen als gevolg van bijvoorbeeld
therapie (zoals in hoofdstuk 4). In dit hoofdstuk stellen we een eenvoudige manier om veranderende
dynamiek te detecteren voor: het tijds-variërende autoregressieve (TV-AR) model. Met dit model
kunnen veranderingen in gemiddeldes en temporele dynamiek gemakkelijk worden gëıdentificeerd en
gemodelleerd.

Hoofdstuk 6 betreft psychologische netwerken gebaseerd op fMRI data. We maken hier gebruik
van een nieuwe datagedreven techniek, ancestral graphs (AGs), en vergelijken deze met een standaard
hypothesegedreven methode, Structural Equation Modelling (SEM). In tegenstelling tot VAR mo-
dellen zijn netwerkanalyses in zowel AG als SEM gebaseerd op de replicatie van conditiespecifieke tests
en niet op de tijdsafhankelijkheid in de tijdreeksdata. Omdat met AGs expliciet getest kan worden of
er gebieden in het netwerk missen, leidt deze techniek over het algemeen tot meer accurate netwerk
structuren dan de SEM methode. Hoewel deze methode momenteel vooral in fMRI onderzoek gebruikt
wordt, kan de AG techniek ook nuttig zijn voor het schatten van netwerken in ander psychologisch
onderzoek.

In hoofdstuk 7 bekijken we psychologisch onderzoek in de brede theoretische zin. Het veld waarin
netwerken worden onderzocht is zeer interdisciplinair. Analyses die uitgevoerd worden om variabelen
te meten in de fysica worden ook gebruikt in psychologisch onderzoek. Echter, in het theoretisch
debat rond meetproblemen worden meetmethoden in de fysica meestal gescheiden bestudeerd van
die in de psychologie. Wij laten in dit hoofdstuk zien dat er interessante parallellen en connecties
tussen de twee onderzoeksgebieden zijn. In het laatste hoofdstuk, de discussie, worden de aangestipte
onderwerpen van deze thesis kritisch onderzocht, uiteindelijk leidend tot het beantwoorden van de
hoofdvraag: Dynamische netwerken in de psychologie – meer dan een mooi plaatje?





To my best friend, my favourite co-author and love of my life:

Markus I. Eronen
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1 Introduction

1.1 Networks everywhere

Take a piece of paper. Draw a few points and some lines between these points. Congratulations, you

have drawn yourself a network. More formally, networks can be seen as simplified representations

capturing how elements in a system are interconnected. So in essence, everything that can be repre-

sented as dots (i.e., nodes or vertices) with lines (i.e., edges, ties or links) between the dots amounts

to a network. Once you have taken a network perspective you will find networks everywhere. Well

known networks are the internet and the World Wide Web (Newman, 2010). Whereas the internet

has a clear physical structure (computers are linked by physical cables), the Web is a more abstract

network with webpages being the nodes and the hyperlinks on the webpages, linking the webpage to

other pages, the edges (van Steen, 2010). Besides information networks, an essential and biological

network is our brain where white matter tracts, or bundles of axons, connect pairs of brain regions

(Rubinov & Sporns, 2010). Finally, one of the oldest fields in network research is social networks, in

which every individual is a node, and links between individuals are determined by, for example, their

friendship or co-authorship.

As networks are so broadly defined, it should not come as a surprise that the research field of

networks is very interdisciplinary, crossing all disciplines of science. However, what is striking is that

networks of di↵erent scientific fields have similar properties, which are often described and analyzed

using graph theory, the branch of mathematics that studies networks (van Steen, 2010). An example

of such a network property is the phenomenon of hubs (Newman, 2010). Studying hubs in a network is

essentially asking the question about the importance of a node in a network. Importance or centrality

can be measured in several ways, of which degree centrality is the most common one. The degree

of a node is calculated by counting the number of edges attached to it, for example by counting the

number of friends an individual has in a friendship network. In case of directed networks (such as the

World Wide Web), degree can be split up into incoming edges (in-degree), the information a node

receives, and outgoing edges (out-degree), the information a node sends out to other nodes in the

network. Hubs then are nodes with an unusually high centrality degree and thus are seen as very

central or important in the network (Newman, 2010). In social networks, for example, there are often
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1. Introduction

only a few central individuals that have a lot of acquaintances, in the World Wide Web network there

are a few pages that are linked by an exceptionally large number of other pages, and in the brain

there are a few brain regions that are involved in a large number of brain processes (Newman, 2010;

Sporns, 2011). Another example of a network property is the small world e↵ect (Watts & Strogatz,

1998). This is the phenomenon that even when a lot of nodes are not directly connected, most nodes

can be reached in just a few steps. Thus, in the context of social networks: strangers can become

acquaintances by just a few steps in a friendship network (Newman, 2010; Travers & Milgram, 1969).

Importantly, through revealing the structure and properties of real-world networks, new insights

can evolve that have real life consequences. A lively example is criminal networks. To fight crime, a

hierarchical paradigm has long been prominent (Klerks, 2001). This was under the assumption that

organized crime has a pyramid structure, and thus targeting the leader of the criminal organization

would result in a disruption of the whole (criminal) pyramid. Taking a network perspective by focusing

on the links between criminals, however, turned out to be far more fruitful to disrupt criminal networks

than traditional law enforcement (Borgatti, Mehra, Brass, & Labianca, 2009; Duijn, Kashirin, & Sloot,

2014).

1.2 Networks in psychology

Networks have not been an unfamiliar topic in psychological research. Techniques like neural net-

works have been used in neuropsychological studies and social networks have been present in social

psychology for decades (see for example; Bronfenbrenner, 1986; Mason, Conrey, & Smith, 2007; Pos-

ner & Rothbart, 2007; Rubinov & Sporns, 2010). Only recently, however, the network approach has

found its way to psychopathology, emotion research and personality research (Borsboom, Cramer,

Schmittmann, Epskamp, & Waldorp, 2011; Bringmann, Vissers, et al., 2013; Costantini et al., 2015).

The foundations for this recent network perspective in psychology can be found in the conceptual-

ization of psychological disorders. It is a well-observed fact that specific symptoms often co-occur and

are thus highly inter-correlated. For example, depressive symptoms are commonly more highly corre-

lated with each other than with symptoms of schizophrenia (Cramer, Borsboom, Aggen, & Kendler,

2012). The question then is why specific symptoms tend to co-occur. In the literature, the tradi-

tional answer has been the common cause or latent variable approach. According to this framework,

symptoms of, for example, depression hang strongly together because they have a common underlying

cause, the disorder depression. Thus, the unobserved latent variable, the disorder depression, causes

observable symptoms such as loss of interest, depressed mood and suicidal ideation. A further implica-

tion of this approach is that symptoms are only related because they share the same underlying cause

or factor and thus are mere indicators of the disorder (i.e, depression; Bollen & Lennox, 1991; Cramer,

2



1.3. Constructing networks in psychology

Waldorp, van der Maas, & Borsboom, 2010; Reise & Waller, 2009; Schmittmann et al., 2013).

The network perspective, however, gives a new answer to the co-occurrence of symptoms. Taking a

network approach, symptoms do not hang together because they are caused by the same latent variable

or disorder, but because symptoms are (part of) the disorder (Cramer et al., 2010). Thus, there is a

mereological relation between symptoms and disorders, which makes it unlikely that the disorder and

symptoms can be separated from each other as is possible with many medical diseases (Borsboom

& Cramer, 2013). You can, for example, have human immunodeficiency virus (HIV) without having

symptoms (Paltiel et al., 2005), but it is implausible that you can diagnose somebody with depression

without this person having any depression symptoms. Following this reasoning, the latent variable or

common cause approach might be plausible for medical diseases, as a medical condition such as HIV

causes symptoms such as fatigue and fever, but seems illogical in explaining the covariance between

symptoms of depression. Instead, the interrelatedness of symptoms occurs simply because symptoms

are directly influencing each other: if I am having sleeping problems I am also more likely to experience

loss of interest and sadness, finally resulting in a full-blown depressive disorder. Thus, disorders are

networks of symptoms that directly (causally) influence each other, leading to the co-occurrence of

symptoms. Consequently, if we want to get a better understanding of psychological disorders, we

should refocus on the relation between the symptoms by elucidating the patterns of interactions

among symptoms, in other words: we need a network approach (Fried, Nesse, Zivin, Guille, & Sen,

2014; Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016). This conceptualization can then be

generalized to other psychological phenomena, resulting in networks of, for instance, emotions and

personality traits (Cramer, van der Sluis, et al., 2012a; Pe et al., 2015).

1.3 Constructing networks in psychology

Once you decide what the nodes in your network should represent (e.g., symptoms), there are several

ways to construct edges between the nodes. One way, resembling the construction of social networks,

is to simply ask individuals or clients about the causal relationships between their symptoms (Frewen,

Allen, Lanius, & Neufeld, 2012; Frewen, Schmittmann, Bringmann, & Borsboom, 2013). However, just

as individuals have di�culties in describing correctly their friendship network (Newman, Barabási, &

Watts, 2006, p. 12), also this kind of perceived causal relation networks are likely to be prone to error.

Still, such networks could be potentially useful as a starting point for therapy.

Alternatively, edges can be derived indirectly through the association between items of a ques-

tionnaire (e.g., the Beck Depression Inventory) answered by one or multiple individuals at one (cross-

sectional) or several (longitudinal) time points. The edges in this case represent, for instance, the

correlation (association networks) or partial-correlation (concentration networks) between nodes or

3



1. Introduction

items of symptoms. Especially constructing concentration networks has been a very popular approach

of estimating networks in psychology, mostly because only cross-sectional data is required (see, for

example, Boschloo et al., 2015; Cramer, Borsboom, et al., 2012; Costantini et al., 2015; Fried et al.,

2015; McNally et al., 2015; Rhemtulla et al., 2016; Robinaugh, LeBlanc, Vuletich, & McNally, 2014;

van Borkulo et al., 2015).

Although widely used, psychological networks based on cross-sectional data are not unproblematic

(Bos & Wanders, 2016; Borsboom, Kievit, Cervone, & Hood, 2009; Hamaker, 2012; Kievit, Franken-

huis, Waldorp, & Borsboom, 2013; Molenaar, 2004; Robinson, 1950). The problem is that results

found at the population level do not automatically generalize to the person level (Hamaker, 2012).

This is a general problem, and thus not specific to network studies. Cross-sectional data, as it has only

one time point, cannot tell us about the processes happening within an individual, but only across

individuals. However, it is often wrongly assumed that patterns (such as how symptoms co-occur)

found through cross-sectional data are descriptive of individual processes (Kievit et al., 2013).

Take for example the relationship between migraine and sleep. If we did a cross-sectional study,

we might very well find that there is a positive relationship between sleep and migraine (Schmitz &

Skinner, 1993). In this case, we could wrongly conclude that individuals who sleep more are more likely

to have migraines. However, the relationship found at the group level simply comes about because in

general individuals who often have migraine attacks tend to sleep more in order to prevent them. In

contrast, within each individual of the group we would actually find a negative relationship; sleeping

less is related to more migraines. In fact, in order to be able to generalize from the group to the

individual level the process under study must be ergodic (Molenaar & Campbell, 2009). Ergodicity is

a mathematical notion that in the context of psychology implies that all within-person moments (e.g.,

mean and variance) of a process are the same across individuals and over time (Molenaar, 2015). For

example, all subjects should have the same mean and co-variance between variables over time. Thus,

ergodicity is a very strong requirement and unlikely to hold in most if not all psychological datasets

(Hamaker, 2012).

This limitation of cross-sectional data has been widely acknowledged in psychological research and

calls have been made for more and longer intensive longitudinal data for deriving networks (Borsboom

& Cramer, 2013; Fried et al., 2015; van Borkulo, Borsboom, & Schoevers, 2016). Fortunately, in the

past three decades, we have witnessed a spectacular growth of intensive longitudinal data (aan het Rot,

Hogenelst, & Schoevers, 2012; Bolger & Laurenceau, 2013; Trull & Ebner-Priemer, 2013). Recently, for

instance, an experience sampling study within a single individual resulted in over 1400 measurements

of his momentary states, such as mood (Wichers, Groot, & Psychosystems, 2016). This inflation of

intensive longitudinal studies is partly a result of an increasing recognition of the necessity of these

kinds of data for the study of individual processes, and partly a result of expanding technological
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1.4. Temporal dynamical networks

possibilities of gathering data through mobile devices like smart-phones. With this development,

networks representing individual psychological processes have become within reach.

1.4 Temporal dynamical networks

The availability of longitudinal studies makes it possible to study all kinds of inter- and intra-individual

di↵erences. For instance, in developmental studies longitudinal data is often used to study change

in the mean of a process, such as the increase of short-term memory capacity from childhood to

adulthood. Although studying these kinds of gross underlying trends is without a doubt a crucial

part of psychological research, the network approach takes a di↵erent perspective. Instead of studying

just the mean levels of, for example, symptoms, this approach highlights the interaction between

variables over time, the temporal dynamics. When studying temporal dynamics, the focus is on

how variables within individuals influence themselves or each other over time, resulting in temporal

dynamical networks.

Vector autoregressive models

Many approaches for studying temporal dynamics are available. What most of these approaches have

in common is that they are based on a form of vector autoregressive (VAR) modeling, a family of

statistical techniques in which the structure of the time-dependency within and between variables

is explicitly modeled through a set of regression equations. Although most VAR techniques model

time as a discrete process, there are also alternatives modeling psychological processes as evolving

continuously over time (Oravecz, Tuerlinckx, & Vandekerckhove, 2011; Voelkle & Oud, 2013). In

addition, VAR techniques can be applied in various frameworks, such as such as the Bayesian (e.g.,

Pole, West, & Harrison, 1994; Schuurman, Grasman, & Hamaker, in press) and the structural equation

framework (e.g., Hamaker, Dolan, & Molenaar, 2003; Voelkle, Oud, Davidov, & Schmidt, 2012). As

the basic VAR model is not explained elsewhere in the thesis, I will discuss this model below in

more detail. After that, the two most important extensions considered in the upcoming chapters, a

multilevel VAR and a time-varying VAR (TV-VAR) model, are shortly explained.

The standard discrete VAR model is a multivariate regression model and has as input time series

data of only one individual (or dyad). Consider for example the smallest network possible, a bivariate

VAR model with lag 1:

y1,t = �10 + �11y1,t�1 + �12y2,t�1 + "1,t (1.1)

y2,t = �20 + �21y1,t�1 + �22y2,t�1 + "2,t. (1.2)
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1. Introduction

In a VAR(1) model there are y
it

variables (nodes of the network), where i = 1, 2, . . . ,m is the num-

ber of variables (in this case m = 2) and t is the time index (Brandt & Williams, 2007). Each

dependent variable (y1,t, y2,t) is regressed on its lagged values (y1,t�1, y2,t�1 respectively) through the

autoregressive parameters (�11 and �22). These parameters capture the strength and direction of the

autoregressive e↵ect a variable has on itself from one time point to the next and are also known as

the self-loops in the network. As an example, consider Figure 1.1. This is a hypothetical example

of positive and negative a↵ect measured daily in a single individual over 100 days. Autoregressive

e↵ects, the green solid self-loops in this figure, indicate to what extent each variable is predictive

of itself over time. A positive autoregressive e↵ect indicates that current levels of, for instance, NA

predict NA levels at the next time point, such as the next day. In addition, a positive autoregressive

e↵ect indicates that the process is not very prone to change, such that its values across time will only

slowly go back to baseline values (Hamaker & Dolan, 2009). A negative autoregressive e↵ect, on the

other hand, indicates a jigsaw pattern in the sense that it predicts fast changing process. That is,

high values at a given time point predict low values of NA at the next time point and vice versa.

−0.2

−0.4

0.6

0.8

PA

NA

Figure 1.1: Simulated time series for valence process (Positive A↵ect (PA) and Negative A↵ect (NA))
of a single individual. The numbers indicate the values of the self-loops (�11 and �22) and cross-
regressive edges (�12 and �21).

Additionally, each dependent variable (y1,t, y2,t) is regressed on the lagged values of each of the

other dependent variables (y2,t�1, y1,t�1 respectively) through the cross-regressive (i.e. cross-lagged)

parameters �12 and �21. These edges are represented by the dashed red lines in Figure 1.1. Cross-

regressive e↵ects indicate the direction and strength of the e↵ect a variable has on other variables
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1.4. Temporal dynamical networks

from one time point to the next. Considering again the example of NA and PA, NA experienced at

one time is likely to be predicted by not only NA at the previous time point (autoregressive e↵ect),

but also by PA (cross-regressive e↵ect). For example, if there is a negative cross-lagged e↵ect from

NA to PA, when the individual under study experiences an increase in her NA at one time point,

she is likely to experience decreased (opposite) PA values at the next time point, whereas a positive

cross-lagged e↵ect from NA to PA indicates that if she has a high NA at one time point she is also

likely to experience an increase in her PA values at the next time point.

On the other hand, auto- and cross-regressive coe�cients that are close to zero indicate that there

is no predictive value within or between the variables. In such a case, for example, an individual’s NA

could not be predicted by her NA itself nor by her PA.

In the VAR model, the �
i0 denote the intercepts. As networks represent the interaction between

and within variables, the intercepts are not included in the network. The innovation terms "1,t and "2,t

(also known as residuals, perturbations, or random shocks) are the part of the current observations

y1,t and y2,t that cannot be explained by the previous observations (y1,t�1, y2,t�1). The innovations

are assumed to follow a white noise process, meaning that all innovation processes have a mean zero

and a time invariant covariance matrix. Although serial correlation in the innovation structure is

not allowed, innovations are allowed to correlate across equations. Note that equations 1.1 and 1.2

do not have to be estimated simultaneously to obtain correct estimates, but can be estimated with

equation-by-equation ordinary least squares (Brandt & Williams, 2007, p.24).

The VAR model specified above can also be rewritten in a more general vector form:

y
t

= �0 +B1y
t�1 + "

t

, (1.3)

with

y
t

=

2

4 y1t

y2t

3

5, �0 =

2

4 �10

�20

3

5 , B1 =

2

4 �11 �12

�21 �22

3

5 and "
t

=

2

4 "1t

"2t

3

5 .

Multilevel VAR models

To estimate a VAR based network, many time points (at least over 50) need to be available. Addi-

tionally, a VAR model allows one to study only the intra-individual dynamics, whereas in order to

generalize results, inter-individual di↵erences are also of importance.

Therefore, to infer dynamical networks, it is fruitful to combine the standard VAR model with a

multilevel model. In a multilevel VAR model, temporal dynamics can be modeled not only within an

individual, but also at group level, estimating both average or population and individual networks. In
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1. Introduction

the multilevel approach, individuals are assumed to come from a population, most often a multivariate

normal distribution (the average of such a population being the fixed e↵ect), but at the same time the

individuals are allowed to di↵er from one another (such deviations from the population mean are the

random e↵ects). By using a multilevel VAR approach to estimate networks, having less time points

per individual can be compensated by having more individuals, and in this way reliable statistical

inferences can be made at both the population and individual level; this is known as borrowing strength.

Changing networks: TV-VAR models

Although models based on VAR or multilevel VAR techniques are often used for inferring dynamical

networks, these models are limited by assuming dynamics to be invariant over time. This is because

one main assumption of both VAR and its extension, multilevel VAR, is stationarity. In general terms,

stationarity means that the statistical properties of the data under study do not change over time,

and thus dynamical features such as the interaction between variables of a network are assumed to

be invariant over time (Chatfield, 2003). However, like biological and sociological network structures

(Ahmed & Xing, 2009; Newman et al., 2006; Rosvall & Bergstrom, 2010), networks in psychology

are likely to evolve and thus change over time. Imagine, for example, a network of symptoms of a

depressed individual. This network might consist of strongly interrelated symptoms, meaning that as

one symptom gets activated other symptoms are also prone to be activated. In order to disrupt this

unwholesome pattern, the individual undergoes therapy. In this case the network is not only expected

to change, but change is in fact the purpose of therapy. Thus, instead of a single network, a network

film is needed, capturing the changing network dynamics over time. This can be accomplished by using

a time-varying VAR (TV-VAR). The defining feature of a TV-VAR model is that the coe�cients of

a VAR model, and thus the network structure, are now allowed to vary over time, following an

unspecified function of time (Dahlhaus, 1997).

1.5 Outline of this thesis

In the upcoming chapters we will provide di↵erent perspectives on networks in psychology. Chapters 2

to 4 all deal with networks based on multilevel VAR models. In Chapter 2, the multilevel VAR model

for inferring dynamical psychological networks is introduced. In this study, longitudinal emotion data

from individuals with residual depressive symptoms were examined. We show how average, individual

and inter-individual networks can be constructed and visualized. In addition to the visualization, we

also show how the inferred network structures can be further analyzed using network analyses, such as

centrality techniques. Furthermore, a validation data set was used, leading to a highly similar network

structure as in the original data.
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Chapter 3 focuses on individual networks, estimated with a multilevel VAR model. In this chapter,

the main goal is to study connectivity of individual emotion networks and their relation to neuroticism.

Connectivity or density analysis is a network analysis that indicates how strongly the network is

interconnected. The denser a network is, the more strongly variables interact. The results suggest

that individuals with high levels of neuroticism had a denser emotion network compared with their

less neurotic peers. This e↵ect is especially pronounced for negative emotion networks. Results were

validated in a second dataset.

When using a multilevel VAR model, the number of variables that can be included in the network

is limited. Therefore, in Chapter 4 we use a moving window approach in order to allow more variables

in the network. In this study, we estimate the network of symptom dynamics that characterizes the

Beck Depression Inventory-II (BDI-II; containing 21 symptoms), based on repeated administrations

of the questionnaire to a group of depressed individuals who participated in a treatment study of an

average of 14 weekly assessments. The focus is on the average group e↵ects and not on individual

e↵ects, as simulation results indicated that, using a moving window approach, the links of the network

at population level can be estimated well, but not the variance components or individual links. Since

the BDI-II symptoms decreased during treatment, the means changed, indicating non-stationarity.

For this reason, a linear trend was included in the multilevel VAR model. Beyond visualization, we

conducted several network analyses, such as centrality and cluster analyses. Results indicated that of

the 21 items, the symptom loss of pleasure was the most central item in the network. Cluster analyses

suggested that the dynamic structure of the BDI-II involves two clusters, which is consistent with

earlier psychometric analyses.

Chapter 5 lays the foundation for studying time-varying networks in psychology. Networks are

likely to change over time, due to for example therapy (see chapter 4). However, up until now there

has been no easy way to detect nonstationarity due to trends and changes in the interactions between

variables simultaneously. With a TV-AR model (which is easily extended to a TV-VAR model),

changes in means and temporal dynamics can be easily identified and modeled. Notably, no prior

knowledge of the processes that drive change in the dynamic structure is necessary. Thus, in this

chapter we hope to show that the TV-(V)AR model has significant potential for studying changing

dynamics and thus networks in psychology.

In Chapter 6, brain networks in psychology are discussed. The nodes in this case are brain

regions of interest (ROIs) involved in motion perception. Not only the kind of data (fMRI data)

used here di↵ers from the previous chapters, but also the method to infer networks. We used a new

data driven technique, ancestral graphs (AGs), and compared it with a standard hypothesis driven

method, Structural Equation Modeling (SEM). In contrast to VAR based models, network analysis

in both SEM and AG is based on the replication of the condition-specific trials and not on the time-
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dependencies of variables in the time series. As AG can test explicitly the assumption of missing

regions (nodes) in the network, it leads in general to more accurate network structures than the SEM

method. Although currently mainly used in fMRI research, AG could also be a promising solution in

other fields of psychological networks as it is very likely that not all relevant variables in a network

have been taken into account, which can lead to spurious relationships in networks when not modeled

explicitly.

In Chapter 7, a more general theoretical perspective on psychological science is taken. As is

underpinned in network research, network analyses are highly interdisciplinary, and analyses done in

physics seem to translate to other fields, such as social or psychological science. Still, in measurement

debates, physical measurement is seen as largely disconnected from psychological measurement. We

argue instead that there are interesting parallels and connections between the two. More specifically,

our novel approach is to study the issue of validity based on the history of measurement in physics,

which results in concrete points that are relevant for the validity debate in psychology and thus also

for network research. For example, psychologists would benefit from focusing more on the robustness

of measurements. Robustness refers here to the idea that if there are several independent ways of

measuring something, this increases our confidence in the measurements. This general point can also

be seen in practice in the rest of the thesis. We try, for example, to get more confidence in our,

still very new, network methods by performing analyses in several datasets (Chapter 2 and 3) or use

independent ways to measure network connections and see if result converge (Chapter 4).

In the last chapter, the discussion, a critical examination of the thesis is presented, ultimately

answering the question: Dynamical networks in psychology – more than a pretty picture?

As chapters 2 to 7 each contain a full published article, there may be some overlap between the

chapters. Data and code of chapters 2 to 5 can be found online on the homepage of the journal where

the article was published. Chapters 2 to 7 have been published in the following journals:

Chapter 2: Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F.,

Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights

into clinical longitudinal data. PLoS ONE, 8, e60188, 1-13.

Chapter 3: Bringmann, L. F., Pe, M. L., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W.,

Tuerlinckx, F., & Kuppens, P. (in press). Assessing temporal emotion dynamics using networks.

Assessment.

Chapter 4: Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuer-

linckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory-II.

Psychological Medicine, 45, 747-757.
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Chapter 5: Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuer-

linckx, F. (in press). Changing dynamics: Time-varying autoregressive models using generalized

additive modeling. Psychological Methods.

Chapter 6: Bringmann, L. F., Scholte, H. S., & Waldorp, L. J. (2013). Matching structural, e↵ective,

and functional connectivity: A comparison between structural equation modeling and ancestral

graphs. Brain connectivity, 3, 375-385.

Chapter 7: Bringmann, L. F., & Eronen, M. I. (2016).1 Heating up the measurement debate: What

psychologists can learn from the history of physics. Theory & Psychology, 26, 27-43.

1Both authors contributed equally to this article
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2 A network approach to psychopathology: New

insights into longitudinal data

Theoretical considerations and empirical evidence in psychology point towards a network perspective,

in which psychological constructs are conceptualized as networks of interacting components instead of

measurements of a latent construct, as hypothesized in traditional perspectives (Borsboom, 2008; Bors-

boom et al., 2011; Cramer et al., 2010; Cramer, Borsboom, et al., 2012; Kendler, 2012; Schmittmann

et al., 2013). From this perspective, mental disorders are understood as networks of interacting symp-

toms (Cramer et al., 2010) that form mechanistic property clusters (Kendler, Zachar, & Craver, 2011):

sets of causally intertwined properties that need not share one fundamental underlying cause. By fo-

cusing on the interaction between symptoms, the network approach naturally captures the fact that

symptoms of psychopathology co-evolve dynamically (Ebner-Priemer, Eid, Kleindienst, Stabenow, &

Trull, 2009): if one symptom arises (e.g., insomnia), that symptom can cause other symptoms to arise

as well (e.g., concentration problems; Cramer et al., 2010).

Such patterns of symptom interaction are likely to vary across individuals. For instance, some

people have a higher degree of emotional variability than others, and such di↵erences are known

to be related to personality traits, such as neuroticism (Kuppens, Oravecz, & Tuerlinckx, 2010).

Likewise, some people may feature stronger connections between sleep deprivation and a↵ect, such

that a night of bad sleep quickly leads to depressed mood, whereas others may be more resilient (see

e.g., Meney, Waterhouse, Atkinson, Reilly, & Davenne, 1998). By focusing on patterns of symptom

dynamics, the network approach may potentially yield important insights into how the dynamics of

psychopathology relate to intra- and inter-individual di↵erences. Despite the fact that the network

perspective is highly suggestive in this respect, techniques to actually empirically chart di↵erences in

the dynamical structure of individuals’ symptom dynamics have so far been lacking. In this paper, we

present a methodology suited for this task and we apply this methodology to data of individuals with

residual depressive symptoms (Geschwind, Peeters, Drukker, Van Os, & Wichers, 2011) to illustrate

its potential use in psychopathology research.

The natural starting point for the study of symptom network dynamics lies in the analysis of

symptoms measured over di↵erent time points. Such time series data have recently become available
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due to the rising popularity of data collection approaches using the Experience Sampling Method

(ESM), where data about the experiences and a↵ect of participants in their daily life are collected

repeatedly over time (Bolger, Davis, & Rafaeli, 2003; Czsikszentmihalyi & Larson, 1987; Stone &

Shi↵man, 1994). However current statistical tools for inferring networks from empirical data, as they

have been developed and applied mostly in systems biology (see e.g., Hendrickx, Hendriks, Eilers,

Smilde, & Hoefsloot, 2011) and neuroscience (see e.g., Gates & Molenaar, 2012; Sporns, 2011), are

not optimally suited for data from ESM studies, for several reasons. First, ESM studies do not

feature very long time series on a single system (i.e., the number of time points per subject is limited),

which hampers the application of typical time series modeling techniques (e.g., J. D. Hamilton, 1994;

Shumway & Sto↵er, 2010). Secondly, ESM data are hierarchically structured because several persons

are measured repeatedly leading to measurements that are clustered within persons (Schwartz &

Stone, 1998). This hierarchical structure necessitates the use of separate models for each individual.

In combination with the relatively short time series, this leads to unstable results when traditional

network models are applied.

In the present article, we demonstrate a statistical method that is tailored to extract network

structures from ESM data. We present a multilevel approach to vector autoregressive (VAR) modeling

that optimally utilizes the nested structure that typically arises in ESM protocols. This approach is

applied to data from an ESM study with a sample of people who feature residual depressive symptoms

after a depressive episode (see Geschwind et al., 2011), and validated in a normal sample. This paper

presents the first glimpses of the dynamic weighted network architecture of psychopathology, and

develops a methodology that yields new possibilities to analyze and understand the structure of

disorders.

The outline of the paper is as follows: first, we elaborate on the ESM study used for the analysis

and introduce the methodology, the multilevel-VAR method. Second, we explain how a network

can be inferred from the data by estimating the average connection strengths between symptoms

or variables of interest. Third, we show how the multilevel-VAR method provides information about

inter-individual di↵erences in addition to the average network. Fourth, we discuss how network models

can be extended with explanatory variables, and how the networks as such can be further analyzed

through local and global analyses. In the fifth section, we show how much of the main results can be

replicated using an independent dataset that serves as cross-validation. The software code (in R; R

Core Team, 2012) and data necessary to perform the analyses that result in the main figures reported

in this article can be found online.
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2.1 Method

Data

We inferred a network structure of six items from an ESM study (Geschwind et al., 2011). The ESM

study followed 129 participants with residual depressive symptoms over the course of 12 days, of

which the first six days were the baseline period. The following six days took place after 2-3 months,

after the participants had been randomly divided into a treatment group (63 participants receiving

mindfulness therapy (mean age of 44.6 years and SD = 9.7; 79% female)) and a control group (66

participants assigned to a waiting list with a mean age of 43.2 years and SD = 9.5; 73% female).

Every day subjects were randomly notified by a beeper in each of ten 90-minute time blocks between

7:30 am and 10:30 pm. When signaled, they had to fill out the ESM self-assessment form assessing

mood and social context in daily life. This resulted in a maximum of 60 responses per period (baseline

or post-baseline). All self-assessments were rated on 7-point Likert scales.

For the purpose of our analysis, we selected a number of items that captured distinctive kinds of

mood states. Mood states can be broadly di↵erentiated in terms of their valence (positive/negative)

and their degree of arousal (high/low; Barrett, 1998; Reisenzein, 1994; Russell, 1980; Russell, Weiss,

& Mendelsohn, 1989; C. A. Smith & Ellsworth, 1985). We included four items that covered di↵erent

values of the two factors of the mood space. Regarding positive mood, we chose the items ‘I feel

cheerful’ and ‘I feel relaxed’ to represent high and low arousal respectively. For representing negative

mood, we chose the items ‘I feel fearful’ and ‘I feel sad’, which capture the subjective experience

of high and low arousal respectively (Baas, De Dreu, & Nijstad, 2008; R. Larsen & Diener, 1992;

D. Watson & Tellegen, 1985). Furthermore, we included the item ‘worry’ because worrying is thought

to play a significant role in emotion regulation, including the onset and maintenance of negative mood

(Borkovec, Ray, & Stober, 1998; Brosschot, Gerin, & Thayer, 2006; Gruber, Eidelman, & Harvey,

2008). The sixth item of the network, ‘pleasantness of the event’, concerned the environmental context,

and assessed the pleasantness of the most important event that happened between the current and

the previous response.

Introducing Multilevel-VAR

To overcome the di�culties that accompany the analysis of nested longitudinal data we developed

a novel combination of VAR (e.g., J. D. Hamilton, 1994; Pfa↵, 2008) and multilevel modeling (e.g.,

Snijders & Bosker, 2012). A VAR model is a multivariate extension of an autoregressive (AR) model

(Shumway & Sto↵er, 2010). An AR model is typically applied to a repeatedly measured variable

obtained from a single subject. In this way, the time dynamics within an individual are modeled. An
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AR model can be considered as a regression model in which a variable at time point t is regressed to a

lagged (measured at a previous time point, t�1) version of that same variable (Walls & Schafer, 2006).

In VAR the time dynamics is modeled for multiple variables. Thus, variables are regressed on a lagged

version of the same variable and all other variables of the multivariate system. By combining the VAR

model with a multilevel model, time dynamics can be modeled not only within an individual, but also

at group level, since the multilevel model allows the VAR coe�cients to di↵er across individuals.

Thus, a combination of both models allows for modeling both individual and population dynamics.

The combination of both modeling approaches has, to the best of our knowledge, not yet extensively

been studied or applied in the statistical, psychometric or econometric literature. The methods devel-

oped in Lodewyckx, Tuerlinckx, Kuppens, Allen, and Sheeber (2011) and Oravecz et al. (2011) have an

approach that comes close to what is presented in this paper. However, both methods have a Bayesian

and more complex modeling approach and are not easily generalizable to ESM data (Lodewyckx et

al., 2011) or can only estimate bivariate symmetric models (Oravecz et al., 2011). Consequently, the

specific disadvantages of Lodewyckx et al. (2011) and Oravecz et al. (2011) make them not directly

applicable for network inference as we envision it. The modeling approach of Pe and Kuppens (2012)

has a similar goal to the method presented in this paper, but makes more approximations (because

only bivariate models are used, even though a network of four variables is inferred). Other recent

approaches using VAR and/or multilevel can be found in the literature (Funatogawa, Funatogawa,

& Ohashi, 2007; Horváth & Wieringa, 2008; Schmid, 2001; Tschacher & Ramseyer, 2009; Tschacher,

Zorn, & Ramseyer, 2012). However, in the majority of these studies, the dynamic parameters are

not treated as random e↵ects but as mere fixed e↵ects (for an exception, see: Horváth & Wieringa,

2008). In addition, many of these studies do not consider a network approach, nor do they present

an accessible way of applying the proposed methodology. In the present paper we present a com-

prehensive random e↵ects modeling strategy that is optimized to the context of network inference in

psychopathology, is implemented in R (R Core Team, 2012), and can be easily passed on to network

analysis routines.

The population network

In this section we explain how a population network of the six variables (cheerful, relaxed, sad, worry,

fear and event) can be inferred with the multilevel-VAR method. The main goal is to estimate the

average connection strengths between all variables in the population. These connection strengths can

then be represented in a network. To estimate these connection strengths we apply the multilevel-VAR

method to the measured values at baseline of the six variables. For an arbitrarily chosen criterion

variable (i.e., cheerful, relaxed, sad, worry, fear or event, for j = 1, 2, ..., 6, respectively), the model
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equation is as follows:

Y
pdtj

= �0pdj + �1pdj · cheerfulp,d,t�1 + �2pdj · sadp,d,t�1 + �3pdj · worryp,d,t�1

+ �4pdj · fearp,d,t�1 + �5pdj · eventp,d,t�1 + �6pdj · relaxedp,d,t�1 + "
pdtj

.
(2.1)

In our case, Y
pdtj

represents the measurement for person p (p = 1, 2, . . . , 129) at day d (d =

1, 2, . . . , 12) and time t of the j-th criterion variable. Equation 2.1 represents the multiple regression

of a single variable at time point t on all other variables at time point t � 1. Because there are six

variables, there are six such regression equations – one for each variable. At baseline (i.e., at days 1 to

6 before the therapy treatment is applied, such that d < 7), the regression coe�cients (i.e., intercept

and regression weights) are decomposed as follows:

�
kpdj

= �base

kj

+ b
kpj

, (2.2)

where �base

kj

represents the population average e↵ect (fixed e↵ect) at baseline of the lagged variable k

(for k = 0, this is the intercept) on the criterion variable j, and b
kpj

is the person-specific deviation

(random e↵ect) of this general e↵ect. In the remainder, person-specific e↵ects will always be denoted

in Roman letters. In order to illustrate our model, let us consider the regression equation for the

variable ‘cheerful’. Because we identify all variables explicitly with their names, we only use the j-

index to distinguish the regression coe�cients, but not to identify the variables (hence, the variables

carry only three indices, as compared to 2.1). At baseline (d = 1, 2, . . . , 6), the model reads (not all

predictors are explicitly included in the interest of clarity):

cheerful
pdt

= (�base

01 + bpre0p1)

+ (�base

11 + b1p1) · cheerful
p,d,t�1

+ (�base

21 + b2p1) · sad
p,d,t�1 + . . .

+ (�base

61 + b6p1) · relaxed
p,d,t�1 + "

pdt1.

Focusing on the baseline level, we may now construct a 6-by-6 matrix Bbase with the fixed e↵ects

�base

kj

(k, j = 1, . . . , 6). The matrix Bbase captures the dependence of the 6-dimensional state (i.e.,

cheerful, sad, worry, fear, event, and relaxed) of a typical individual (i.e., for which b
kpj

= 0) upon

the previous 6-dimensional state (all e↵ects at baseline). A specific element �base

kj

thus expresses the

extent to which variable k at time point t�1 is related to variable j at time t, while controlling for all

other variables. The elements on the diagonal (i.e., �base

jj

) are the autoregressive e↵ects (self-loops),
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2. A network approach to psychopathology

while the o↵-diagonal elements are the cross-regressive e↵ects (�base

kj

; connections between di↵erent

variables). Note that, in general, Bbase is asymmetric.

The matrix Bbase can be viewed as an adjacency matrix (Boccaletti, Latora, Moreno, Chavez, &

Hwang, 2006) of a weighted network. The matrix Bbase contains the fixed e↵ects of the multilevel-

VAR model and represents the lag 1-links between the nodes (i.e., the variables). Thus the matrix

Bbasecan be thought of as the population average of the network structure. Because we are looking

at several specific links, we control for multiple testing by controlling the False Discovery Rate (FDR

method; Benjamini & Hochberg, 1995)) at 5%. The generated network structure can be visualized

through the R package qgraph (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012). Only

connections that surpass the significance threshold are shown in the visual representation.

Since fitting a multilevel-VAR model directly to the multivariate time series of the participants in

the sample is computationally challenging, we approach the problem by breaking up the complicated

multivariate problem into a series of easier-to-compute univariate models which are integrated in a

second step (i.e., by representing them as a network). This approach can be considered as an instance

of the so-called pseudo-likelihood method (Arnold & Strauss, 1991; Fieuws & Verbeke, 2006). By using

univariate models, most parameters are estimated directly (e.g., all fixed e↵ects �
kj

and variances of

the error terms "
pdtj

). However, some parameters of the model such as the correlations between error

terms of the di↵erent univariate regression models can only be estimated indirectly in our approach. In

Appendix 2.A, a more elaborate description of the pseudo-likelihood method is given, and it is shown

through simulations that point estimates of most directly and indirectly estimated parameters are on

average close to the true values. This indicates that the pseudo-likelihood fitting procedure of the

multilevel-VAR approach is a feasible alternative to full likelihood fitting procedures. The modeling

is carried out using the lme4 package in R (see R-code; Bates, Maechler, & Bolker, 2012).

Individual di↵erences

The multilevel-VAR method provides information about inter-individual di↵erences (random e↵ects)

in the network, in addition to the population average network (see Equation 2.2). Through the random

e↵ects we can construct networks of individual variability and infer a network for each subject of the

ESM study separately (see R-code). In this paper, we take a random e↵ect approach to estimate

inter-individual di↵erences, and assume that these person-specific parameters b
kj

are drawn from a

multivariate normal distribution with a zero mean vector and an unstructured covariance matrix (see

e.g.,Verbeke & Molenberghs, 2000; see Equation 2.2). Other approaches to deal with inter-individual

di↵erences are fixed-e↵ects analysis (i.e., constructing a dummy variable for each subject; Baltagi,

2008) and conditional analysis (see e.g., Verbeke, Spiessens, & Lesa↵re, 2001). In the multilevel-
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2.1. Method

VAR method a random-e↵ects approach is taken because it avoids possible problems related to the

two previously mentioned approaches. The approach is more parsimonious in terms of number of

parameters: instead of having to estimate explicitly all person-specific parameters as in the dummy

variable approach, only the variance parameters have to be estimated (Neyman & Scott, 1948), which

at the same time avoids problems of inconsistent estimators (Gelman & Hill, 2007). The random-

e↵ects approach also allows one to evaluate all e↵ects, in contrast to the conditional analysis approach,

in which e↵ects of between-person variables, such as possible therapy e↵ects, cannot be evaluated

(Tuerlinckx, Rijmen, Verbeke, & Boeck, 2006).

To construct a network representing individual variability, we take the estimate of the population

standard deviation of the person-specific (random) e↵ects SD(b
kpj

). Thus, each connection in the

network represents the SD of the random e↵ects for that specific connection. Connections in the

network that have a large standard deviation represent a high variation of the value (connection

strength) of that specific connection over individuals. In addition, the model in Equations 2.1 and

2.2 allows for constructing a network of a single subject. These N = 1 networks are a combination

of the individual random e↵ect, which is added to the fixed e↵ect of the relevant link (connection) in

the network. For instance, in the individual network of person p at baseline, the link from node k to

node j has a value of �base

kj

+ b
kpj

(see Equation 2.2).

Extending the network model with explanatory variables: Local and global

network analyses

As is the case in a standard multilevel analysis, explanatory variables that might explain part of the

inter-individual variability can be added (called level-2 variables in standard multilevel terminology,

see Snijders & Bosker, 2012). In this paper, we present two examples. In the first example, the

explanatory variable therapy-intervention is added to the standard model. We compare the network

of the therapy group with the non-therapy group by comparing specific links in the networks. A

therapy e↵ect on the network structure implies a significant three-way interaction. For example, if

there is a therapy e↵ect on the link from sad to cheerful, this means that the interaction between the

variables therapy (therapy or control), time (pre or post baseline) and sad (ranging from 1 to 7) is

significant in the regression model that applies to the variable cheerful, signifying that the e↵ect of

feeling sad on feeling cheerful has changed from pre- to post-therapy.

In the second example, we explain variability in individual networks by relating it to covariates;

here, neuroticism functions as an example. We present a global network analysis, in which the overall

structure of the network is taken into account; these analyses contrast with local network analyses,

which compare specific connections across networks. A representative example of such a network
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2. A network approach to psychopathology

analysis is a centrality analysis. We will examine whether the structure of the network regarding

centrality changes when the degree of neuroticism changes. This question is approached by looking

at di↵erences in the network structure of three di↵erent groups: low, mid and high neuroticism.

Therapy: Local network analysis

In order to analyze whether therapy had a significant e↵ect on the network structure we added the

variable ‘therapy-intervention’ to the baseline model (see Equation 2.2; see R-code). Thus, besides

reports measured at baseline (i.e., d < 7), we also added post-baseline measurement instances (i.e.,

d � 7). The regression coe�cients (for which k = 0 is the intercept and k > 0 are the regression

weights) are now equal to:

�
kpdj

= �base

kj

+ �post

kj

+ �
kj

Therapy
p

+ b
kpj

, (2.3)

where d � 7 and the term Therapy
p

equals to 0 if person p belongs to the control group, and takes

value 1 if the person received mindfulness therapy. As can be seen from the equation, �post

0j represents

the di↵erence between the intercept at baseline and post-baseline for the control group. In general,

Equation 2.3 allows for a di↵erence between the mean of the control and the therapy group, so

di↵erences between the two groups post-baseline are accommodated for. A comparison of Equations

2.2 and 2.3 shows that the model assumes person-specific deviations from the regression weights to be

the same pre- and post-baseline (i.e., persons who deviate in a particular way from the mean structure

during baseline will continue to do so post-baseline). This restriction is made for reasons of parsimony.

However, for the intercept, the model allows person-specific deviation of the general intercept to be

di↵erent pre- and post-baseline (therefore the pre-baseline person-specific deviation will be denoted

as bpre0pj and post-baseline as bpost0pj ).

To illustrate this model, let us consider the regression equations for the variable ‘cheerful’. The

post-baseline (d = 7, . . . 12) model for the controls becomes

cheerful
pdt

= (�base

01 + �post

01 + bpost0p1 )

+ (�base

11 + �post

11 + b1p1) · cheerful
p,d,t�1

+ (�base

21 + �post

21 + b2p1) · sad
p,d,t�1 + . . .

+ (�base

61 + �post

61 + b6p1) · relaxed
p,d,t�1 + "

pdt1,

while that for the therapy group equals
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2.1. Method

cheerful
pdt

= (�base

01 + �post

01 + �0jTherapyp + bpost0p1 )

+ (�base

11 + �post

11 + �11Therapyp + b1p1) · cheerful
p,d,t�1

+ (�base

21 + �post

21 + �21Therapyp + b2p1) · sad
p,d,t�1 + . . .

+ (�base

61 + �post

61 + �61Therapyp + b6p1) · relaxed
p,d,t�1 + "

pdt1.

(2.4)

Analogous to the construction of Bbase, as described in the previous section, we may construct matrices

Bpost�control and Bpost�therapy, which can be interpreted as network structures that describe the post-

intervention behavior of the relevant variables as they apply to control and therapy groups. Through

this model we can evaluate the e↵ect of therapy, by looking at the three-way interactions between a

predictor variable, the post-baseline indicator and the therapy-indicator (the parameters of interest

are �
kj

in Equations 2.3 and 2.4). Because we are looking at several specific links, we control for

multiple testing. This is done by controlling the False Discovery Rate (FDR method; Benjamini &

Hochberg, 1995) at 5%.

Neuroticism: Global network analysis

Important information about a network can be gained by analyzing its global structure, for example

by looking at the relative centrality of di↵erent nodes. In a centrality analysis, nodes are ordered

in terms of the degree to which they occupy a central place in the network. Relevant centrality

measures can be constructed in di↵erent ways (Opsahl, Agneessens, & Skvoretz, 2010); here, we focus

on betweenness centrality. Betweenness centrality takes direct and indirect weighted links between

the nodes into account. First, for each pair of nodes x and y (e.g., worry and cheerful), the strongest

direct and/or indirect connecting paths from x to y and from y to x are determined. Then for each

node, it is calculated to which degree the node lies on the shortest path between two other nodes.

The more often a node lies on the shortest path between two other nodes, the more the node can

funnel and influence the flow in the network, and the higher its betweenness centrality is (Opsahl et

al., 2010). To evaluate whether betweenness centrality of the network changes when the degree of

neuroticism changes we added the variable neuroticism to the regression model in the same way as

the variable therapy was added (see R-code):

�
kpdj

= �base

kj

+ �post

kj

+ �
kj

Therapy
p

+ ⌘
kj

Neuroticism
p

+ b
kpj

. (2.5)

In this study, neuroticism was assessed with the NEO-FFI scale of neuroticism (Hoekstra, Ormel, &

De Fruyt, 1996). In order to be able to deal with possible nonlinear e↵ects of neuroticism on the

21



2. A network approach to psychopathology

network structure, the continuous neuroticism measure was subdivided into three groups (based on

the three quartiles) resulting in a low, middle and high neuroticism group, corresponding respectively

to sum scores 12-34, 35-45, and 46-60 on the NEO-FFI scale. The term Neuroticism
p

equals to 0 if

person p belongs to the low neuroticism group, takes value 1 if the person p belongs to the middle

neuroticism group and equals to 2 if the person p belongs to the high neuroticism group. For reasons

of parsimony, we let neuroticism interact with the connection strengths of the baseline network only.

For computing betweenness centrality, we used the R package qgraph (Epskamp et al., 2012).

To assess the uncertainty of betweenness centrality, we used a nonparametric bootstrap method to

construct the distribution of the betweenness statistic under the null hypothesis that the fitted model is

correct (Efron & Tibshirani, 1994). To achieve this, the bootstrap was implemented for the multilevel

model, taking time dependency into account. As a result, the latter also implies that the R-code

cannot be run on a standard computer, due to extra computational di�culty (bootstrapping large

multilevel models is much more computationally demanding than bootstrapping, for example, linear

models). In total 1000 datasets were bootstrapped.

Finally, the multilevel-VAR model was fitted to each of the 1000 simulated datasets, and from the

estimated coe�cients, the betweenness at baseline for low, mid and high levels of neuroticism was

computed. From the distribution of betweenness scores, we calculated the median and the 50% and

95% bootstrap confidence intervals (see R-code for an example of the nonparametric bootstrapping

procedure).1

Replication of the results: A validation dataset

In order to test if results found with the multilevel-VAR method could be replicated, we compared

the main outcomes of the main dataset with a second validation dataset. The validation data we used

was from an ESM study of Kuppens (part of the data are published in Koval, Kuppens, Allen, &

Sheeber, 2012; Pe, Koval, & Kuppens, 2013; Pe, Raes, et al., 2013). In this ESM study, 97 university

students (with a mean age of 19.1 years, SD = 1.3; 63% female) were followed over the course of seven

days. The participants had to fill out an ESM self-assessment form assessing mood and social context

in daily life 11 times a day. This resulted in a maximum of 77 responses. All self-assessments were

rated on scale from 0 to 100. From this dataset, we selected the variables that this set had in common

with the variables of the main dataset: cheerful, relaxed, sad, worry and fear. Note that ‘worry’ was

assessed slightly di↵erently in the validation study: “How much have you worried since the previous

beep” instead of “I am worrying at the moment”. Furthermore, the pleasantness of events was not

1This part is based on a corrected version of the paper. The nonparametric bootstrap procedure was executed with
help of Merijn Mestdagh.
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measured in this study. To increase comparability, networks inferred from these five variables were

compared with networks inferred from the five corresponding variables of the main dataset.

First, we inferred a population network containing the five variables cheerful, relaxed, sad, worry

and fear for both the main dataset and the validation dataset. Then the connection strength of

the links of the main network was correlated with the links of the validation network. The higher

the correlation, the better the two inferred networks agree. To assess the correlation, we used both

Pearsons product moment correlation and Spearmans rank order correlation coe�cient. In addition,

we assessed to which extent the variances of inter-individual di↵erences are comparable in the two

studies. The correlation between the variances of the random e↵ects of the links of both networks

was calculated using Spearmans product moment correlation and Pearsons rank order correlation

coe�cient.

In the validation dataset, there is no therapeutic intervention, so the local network analysis could

not be replicated. However, neuroticism was measured in the validation set, and thus we applied the

global network analysis to the validation set. Hence, we tested whether the centrality of the network

changes in the same way in both datasets when the degree of neuroticism varies. Again, we used

only the five variables that both sets have in common. In this ESM study, neuroticism was measured

with the Dutch version of the Ten Item Personality Inventory (Gosling, Rentfrow, & Swann, 2003;

Hofmans, Kuppens, & Allik, 2008) with a sum score ranging from 1 to 7. Neuroticism was again

subdivided into three groups: a low, middle and high neuroticism group, corresponding respectively

to sum scores 1-2, 2.5-4.5, and 5-7 on the TIPI scale.

Model assumptions

In order to apply the multilevel-VAR model three assumptions on which the model is built need some

further commenting. The first assumption is that we start the clock again at the start of each day as

to avoid the day-night problem, which means that we do not use the measurements of yesterday to

predict the measurements of today (because a night separates the two days). A night is a relatively

large time interval and is psychologically and physiologically qualitatively di↵erent from daytime (e.g.,

Lavie, 2001). Thus, the first measurement of the day was excluded from analysis. With regard to

time it is furthermore assumed that the time intervals between two consecutive measurements are

approximately equal.We will come back to both aspects when discussing the results.

Stationarity is a second important assumption inherent to the model. In order for a process to be

(weakly) stationary, the mean and variance of the series must stay unchanged over time (Box, Jenkins,

& Reinsel, 1994). Stationarity was tested with the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

separately for every subject and variable pre and post intervention. The null hypothesis of the KPSS
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2. A network approach to psychopathology

test is that a time series is stationary (Kwiatkowski, Phillips, Schmidt, & Shin, 1992). Furthermore,

a general check was executed to test for a trend, and thus non-stationarity, in the overall data. This

was done by comparing the model outlined in the previous section with a model into which a person-

specific linear deterministic trend was added (using the beep number as a predictor). For both models,

the Bayesian Information Criterion (BIC) was calculated (by summing the separate BICs of the six

univariate models). The BIC is a comparative model selection method that takes both the goodness-

of-fit of a model and the complexity of the model (as measured by the number of parameters) into

account. Models with a large number of parameters are penalized (Schwarz et al., 1978). The model

with the lowest BIC is the preferred model.

The specific order of the model is the third assumption. For reasons of parsimony, we present only

the results of the baseline models with lag-1 predictors included. However, we also fitted competing

models of orders two and three (i.e., with all lags included up to the specified order). In order to

keep the problem computationally tractable, we did not allow for random e↵ects on predictors of lags

larger than one and in the main dataset we constrained the additional lag e↵ects to be equal at pre-

and post-baseline and in control and therapy groups.

2.2 Results

This section is organized as follows. We start by discussing the validity of the stated assumptions

(because the validity of the results depends on the veracity of the assumptions). Subsequently, we

discuss the population network, individual di↵erences, and the e↵ect of explanatory variables.

Assumptions

Since a measurement is not allowed to predict the following measurement overnight, we deleted the

first measurement of each day. Furthermore the data had to be lagged. Together this led to a reduction

in the number of reports included in the analysis: The average number of useable data points went

down from an average of 49 to an average of 35 reports for each period (baseline and post-baseline).

Regarding the assumption of equally spaced time points, the ESM study, having a quasi-random

beeping scheme, violates this assumption. However, the extent of the violation is taken to be small,

since the variation in between-measurement points is relatively small with an average of 1.5 hours and

a standard deviation of 0.54.

Concerning stationarity, the KPSS test indicated that a vast majority of the data was stationary

(about 77%). In addition, the BIC indicated that the models without trend were a better fit to the

data (BIC= 172896) than the models with linear trend (BIC= 172995). Thus, overall the data are

judged to be su�ciently stationary.
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Regarding the lag order, the BIC indicated that the order-3 model fitted best and the order-2

model fitted better than the order-1 model. However, the lag-1 coe�cients were very similar across

the three models. Since the impulse response functions (J. D. Hamilton, 1994; Lütkepohl, 2007) also

did not reveal any substantive e↵ects of interest, which could have warranted a more complex analysis,

we proceeded with the order-1 results.

The population network

The inferred population network at baseline is presented in Figure 2.1 (i.e., the matrix Bbase). Each

variable is represented by a node in the network and relations between items are represented by the

weighted arrows (connection strength) between nodes. The arrow from item k to item j is a visual

depiction of the weight �
kj

, expressing the strength of the relation between item k at time t� 1 and

item j at time t. Arrows can be either red, indicating a negative relationship (i.e., �
kj

< 0), or green,

indicating a positive relationship (i.e., �
kj

> 0). Furthermore, the strength of the relation from item

k to item j (i.e., a more extreme value of �
kj

) is translated into the thickness of the arrows: the

thicker the arrow between two nodes, the stronger the relation between the nodes or items. Note that

item responses can also be predicted from the previous state of the item itself. These arrows are the

self-loops in the network.

In Figure 2.1, only arrows that surpass the threshold for significance (i.e., p-value of the t-statistic

is smaller than 0.05) are represented in bold in the network; the non-significant arrows are made

transparent. Controlling for multiple testing by controlling the False Discovery Rate (FDR method;

Benjamini & Hochberg, 1995) at 5% does not lead to qualitatively or quantitatively di↵erent con-

clusions. From Figure 2.1, a few general insights on the dynamical network structure between the

six items can be derived. First, in accordance with a dynamical view on emotions, both the positive

and the negative items form a cluster representing self-perpetuating cycles in which the components

of negative and positive emotions interact (see also Fredrickson & Joiner, 2002; Zelenski & Larsen,

2000). We find that positive or excitatory connections exist among items of the same valence, while

negative or inhibitory relationships exist among clusters of mood states of opposite valence (e.g.,

cheerful, relaxed and pleasant event on the one hand and sad, worry and fearful on the other hand).

This is in line with existing theories in a↵ect research (J. T. Larsen, McGraw, & Cacioppo, 2001; Pe

& Kuppens, 2012; Russell & Carroll, 1999; D. Watson, Wiese, Vaidya, & Tellegen, 1999).

A second insight from Figure 2.1 is that the self-loops or autoregressive e↵ects are always positive

and they are generally among the strongest connections in the network, indicating that, for instance,

the current experience of worry or cheerfulness predicts future feelings of worry or cheerfulness. At a

more detailed level, we see that in the baseline model, for example, worry leads to increases in negative
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2. A network approach to psychopathology

a↵ect by enhancing negative moods and inhibiting positive moods. This lines up well with previous

findings (e.g., McLaughlin, Borkovec, & Sibrava, 2007; Moberly & Watkins, 2008; Segerstrom, Tsao,

Alden, & Craske, 2000) and supports the validity of our approach.

C

E

W

F

S

R

Figure 2.1: Estimated population network at baseline. The six items are: C=cheerful, E=pleasant
event, W=worry, F=fearful, S=sad and R=relaxed. Solid green arrows correspond to positive con-
nections and red dashed arrows to negative connections. Only arrows that surpass the significance
threshold are shown (i.e., for which the p-value of the t-statistic is smaller than 0.05). Arrows can be
either red, indicating a negative relationship (i.e., �

kj

< 0), or green, indicating a positive relationship
(i.e., �

kj

> 0). Furthermore, the strength of the relation from item k to item j (i.e., an extremer
value for �

kj

) is translated into the thickness of the arrows: the thicker the arrow between two nodes,
the stronger the nodes or items are related. Note that item responses can also be predicted from the
previous state of the item itself. These arrows are the self-loops in the network.

Individual Di↵erences

The multilevel-VAR method also provides information about inter-individual di↵erences (random

e↵ects) in the network in addition to the population average network (fixed e↵ects). The links with the

largest inter-individual di↵erences are shown in Figure 2.2. The arrows in the network now represent

the estimated variance of the relevant VAR parameters over individuals. Only arrows containing a

SD(b
kpj

) larger than 0.1 are emphasized in Figure 2.2. For example, the pronounced self-loop on the
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item ‘worry’ indicates a high individual variability.

This individual variability can also be immediately observed in the networks of individual subjects.

Figure 2.3 illustrates the individual networks at baseline for two persons. The network on the left has

a quite strong self-loop for the item ‘worry’, which means that when this person worries, he or she

tends to worry for a longer time. On the other hand, the network of the participant on the right has a

weak self-loop for the item ‘worry’, meaning that when this person starts to worry he or she is likely

to worry for only a short time. Thus, not only can we verify which arrows have a high inter-individual

variability; we can also immediately indicate what these arrows look like in networks that apply to an

individual person.

C

E

W

F

S

R

Figure 2.2: Inter-individual di↵erences of the arrows of the network from Figure 2.1. The thickness
of the arrows is based on the size of the standard deviation of the random e↵ects. To construct the
figure, we have put a cuto↵ of 0.1 on the standard deviation and only the standard deviations above
the cuto↵ are shown with a non-transparent arrow. As the threshold for the standard deviation of
the random e↵ects 0.1 was chosen because it represents large inter-individual di↵erences. The average
coe�cient of the self-loops (i.e., autoregression coe�cients) is about 0.2 with a random e↵ects standard
deviation of 0.1. Therefore, assuming a normal distribution, the range from 0 to 0.4 represents 95% of
the individual self-loop coe�cients. With a larger cuto↵, such as 0.2, also individuals having negative
self-loops would be taken into account. However, more than 95% of the population has a positive
self-loop strength.
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Therapy: Local network analysis

To evaluate the e↵ect of therapy on the local network structure we compared the arrows in the networks

of the therapy and the control group. After correcting for multiple testing (using FDR controlled at

5%), none of the arrows indicated a significant e↵ect of therapy on the network structure, meaning

that there was no significant three-way interaction between the arrow, the post-baseline indicator and

the therapy-indicator. However, this does not imply that there is no e↵ect of therapy at all. First

of all, as shown in previous research (Geschwind et al., 2011), therapy has an e↵ect on the average

levels of some variables, and also in this study we can detect e↵ects of therapy on the mean level of,

for instance, cheerfulness. Secondly, the fact that we did not find an e↵ect of therapy on the network

structure here could also be due to a lack of power. Correcting for multiple testing always leads to a

decrease in power, which can lead to missing an e↵ect on the network structure that is small but still

relevant.

Neuroticism: Global network analysis

To assess the e↵ect of neuroticism on the global network structure, we tested whether the structure of

the network regarding betweenness centrality changes as a function of neuroticism. Figure 2.4 presents

the results of the betweenness analysis for low, middle and high neuroticism at baseline. For every

item, the model-based estimate of betweenness is calculated, together with a bootstrap simulated 50%

and 95% confidence interval. Plotting both 50% and 95% confidence interval gives an indication of

the asymptotic distribution of the estimate.

Although the distributions of the betweenness coe�cients are quite wide (as are the associated

confidence intervals), the data do suggest some interesting trends. In order to get a good interpreta-

tion of the e↵ects of neuroticism on betweenness, it is insightful to look at the e↵ects on the entire

betweenness distribution. Whereas the centrality of the nodes fearful and event are low and stable

across groups, the positive nodes cheerful and relaxed become less central as neuroticism increases.

This is indicated by the distribution, which clearly shifts downwards. Notably, worry has a higher

centrality distribution in the high neuroticism group than in the low and mid neuroticism group.

That is, worry becomes one of the most central nodes in the high neuroticism group. This result is in

line with studies suggesting that worry is an important manifestation of neuroticism (Muris, Roelofs,

Meesters, & Boomsma, 2004), and with the idea that worry is a cognitive concomitant of neuroticism

(Segerstrom et al., 2000).
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Figure 2.4: Centrality (betweenness) of each item in the network as a function of level of neuroticism
at baseline. Low, mid, and high neuroticism are shown from left to right. The labels of the items are
abbreviated by their first letter (C=cheerful, S=sad, R=relaxed, W= worry, F=fearful and E=event).
The black dots are the model-based estimate of betweenness, the darkgrey vertical lines represent
50% confidence intervals and the light grey vertical lines represent 95% confidence intervals (as esti-
mated from the bootstrap method). Together, the median, 50% and 95 % confidence intervals give
information on how the node centrality for every item in all three networks is distributed.

2.3 Replication of the results: A validation dataset

Assumptions

The assumptions for applying a multilevel-VAR model were also met in the validation dataset. Ex-

cluding the first measurement of each day and lagging the data led to a reduction in the number of

reports included in the analysis: The average number of useable data points went down from an av-
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2.3. Replication of the results: A validation dataset

erage of 60 to an average of 53 reports. In this dataset, the assumption of equally spaced time points

was also only slightly violated. The variation in between-measurement points was relatively small

with an average of 1.2 hours and a standard deviation of 0.49. Regarding stationarity, the KPSS test

indicated that a vast majority of the data was stationary (about 70%). In addition, the BIC indicated

that the models without trend (BIC= 202100) were a better fit to the data than the models with

linear trend (BIC= 202203), indicating that overall the data is stationary. Because the higher order

analyses did not reveal any substantially di↵erent conclusions and the aim was to compare the results

from the two datasets, we pursued an order-1 analysis.

Population network

In the left panel of Figure 2.5, the correlation between the connection strengths of the links of the

main population network and the links of the corresponding validation network is shown. The product

moment correlation between the connection strengths of the two networks is 0.95 (p < 0.0001; the

rank order correlation is r=0.96, p < 0.0001). This indicates that the population networks between

both datasets agree almost perfectly. The networks inferred for the validation data are not shown

here, but can be found in Appendix 2.B.
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Figure 2.5: Correspondence between the basis dataset and the validation dataset. Left panel: Rep-
resentation of the correspondence between the population network coe�cients (fixed e↵ects) of the
basis dataset (x-axis) and the validation dataset (y-axis). Right panel: Representation of the corre-
spondence between the inter-individual di↵erences (random e↵ects) of the basis data (x-axis) and the
validation data (y-axis).
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2. A network approach to psychopathology

Individual Di↵erences

In the right panel of Figure 2.5 the correlation between the connection strengths of the links of the

main inter-individual di↵erences network and the links of the corresponding validation network is

shown. The product moment correlation between the connection strengths of the two networks is a

sizeable correlation of 0.50 (p =0.01; rank order correlation is r=0.56, p=0.004). This indicates that

although some links in the inter-individual di↵erences networks di↵er between the two datasets, the

majority of them reflect a similar degree of individual variability. We refer again to Appendix 2.B for

a visual illustration of the individual di↵erences networks in both datasets.

Neuroticism: Global network analysis

In Figure 2.6 the results of the betweenness centrality analysis for low, middle and high neuroticism

of the validation dataset are shown. These results can be compared with Figure 2.4, since the results

of the main dataset with five variables are very similar to those with six variables (see Appendix 2.B

for the betweenness centrality figure of the main dataset with only five variables). Although worry is

again one of the most central nodes in the high neuroticism group, there is no clear shift in centrality

between the groups, which we found in the main dataset (see Figure 2.4). In fact, worry seems to be

also one of the most central nodes in the low and mid neuroticism group in this dataset. The di↵erence

in centrality between the datasets could be related to the overall level of neuroticism. After applying a

linear transformation to approximately equate the neuroticism measures in the two groups, we found

that in the main dataset the average neuroticism score (M = 40.7; SD = 7.4) was markedly higher

than in the validation set (M = 31.1; SD = 12.1; t(148.68) = �6.9, p < 0.0001). Furthermore, as

noted in the Method section, worry was assessed slightly di↵erently in the two datasets, which could

also account for the di↵erence in the centrality of worry.

2.4 Discussion

In this paper, we have presented a combination of vector autoregressive (VAR) modeling and multi-

level modeling which, to the best of our knowledge, is the first method suited for inferring networks

from ESM data. The modeling technique combines time series with individual di↵erences. This strat-

egy allows us to cope with the peculiarities of ESM data (e.g., short time series, significant individual

di↵erences) but also opens up unique possibilities for studying individual di↵erences in dynamic struc-

ture. Thus, the methodology is an important addition to network methodologies that are currently

being developed in personality and clinical psychology and psychiatry (Borsboom et al., 2011; Cramer

et al., 2010). For simplicity, we limited the analysis to six variables in this paper, but in principle
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Figure 2.6: Centrality (betweenness) of each item in the network as a function of level of neuroticism
in the validation dataset. Low, mid, and high neuroticism are shown from left to right. The labels
of the items are abbreviated by their first letter (C=cheerful, S=sad, R=relaxed, W= worry and
F=fearful). The black dots are the model-based estimate of betweenness, the darkgrey vertical lines
represent 50% confidence intervals and the light grey vertical lines represent 95% confidence intervals
(as estimated from the bootstrap method). Together, the median, 50% and 95 % confidence intervals
give information on how the node centrality for every item in all three networks is distributed.

the analysis is generalizable to larger datasets and to di↵erent time series models (e.g., models with

di↵erent lags). Thus, the methodology is su�ciently flexible to give rise to a relatively comprehensive

approach. Furthermore, it is a great advantage that such complex dynamics between several variables

can be easily visualized as a network with the R package qgraph (Epskamp et al., 2012). Illustrating

the dynamical interaction between several variables helps to give an immediate intuitive understand-

ing of the complex structure of the model, and is more insightful than a mere verbal explanation
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2. A network approach to psychopathology

(Gather, Imho↵, & Fried, 2002; Wild et al., 2010).

The multilevel-VARmethod combines a nomothetic approach, which makes it possible to generalize

findings to a population level, with an idiographic approach, which models dynamical processes at

the level of the individual person. In our study, for instance, the fixed e↵ects of the model form

a plausible network at group level, which shows the average dynamics between six mood related

variables at baseline. Importantly, this population network was replicated in the validation dataset.

In both datasets the same dynamics between the variables were found, supporting the validity of the

multilevel-VAR method.

In addition, individual heterogeneity can be easily assessed using the random e↵ects estimated in

the model. Again, a similar network of individual heterogeneity was found in the validation data.

Although some links in the networks of individual heterogeneity di↵ered between the two datasets,

the majority of them showed a similar degree of individual variability. Because the two datasets

contain di↵erent populations, it is to be expected that not all links show the same amount of indi-

vidual heterogeneity. Intra-individual time series can also be studied by combining fixed and random

e↵ects for each subject, which results in individual networks. Thus, our method successfully combines

nomothetic and idiographic approaches to data analysis.

In time, the latter approach may lead to improved understanding of intra-individual functioning;

this may in turn lead to better therapeutic interventions. A network analysis of a subject receiving

therapy may show, for example, that the link between rumination and sadness is the strongest link in

the network and that a therapy should intervene on that link to improve the overall mood.

In addition to the visualization of the multilevel-VAR analysis, the inferred networks open a range

of new questions and possibilities that arise from network theory, and thus open a whole new research

field. On the one hand, the local structure or specific connections can be studied with a local network

analysis; on the other hand, the overall structure of the network can be studied with a global network

analysis.

An example of a network analysis is node centrality as assessed through a betweenness measure.

With this global network analysis we identified the most central node in a network for three groups

with a di↵erent neuroticism level (low, mid and high). Our results revealed that in general, the

node worrying was more central in the high neuroticism group than in the low or mid neuroticism

group. This could be interpreted as indicating that worrying in general has a greater influence on the

network in the high neuroticism group than in the low and mid neuroticism group. In the validation

dataset there was no clear shift in worry in the high neuroticism group compared to the low and mid

neuroticism group, but in this study worry was assessed slightly di↵erently than in the main study,

and furthermore, the population was di↵erent (college students instead of older subjects with residual

depressive symptoms); in general, the subjects had lower neuroticism scores. More research is needed
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2.4. Discussion

to study the relation between neuroticism and node centrality in di↵erent kinds of populations.

Future research may focus on developing similar local and global network analyses, specifically

suited for networks inferred from ESM data, and on evaluating the implications of these results. Thus,

the presented methodology enables the use of network approaches in clinical research and open new

possibilities to analyze and understand the structure of disorders, not only by inferring and visualizing

the interaction between the variables, but also by further analyzing the new inferred networks.
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Appendix 2.A Pseudo-likelihood method and simulation study

Pseudo-likelihood method

Fitting a combination of VAR (for modeling the intra-individual change) and multilevel modeling (for

modeling inter-individual di↵erences) comes with certain di�culties. Therefore, we apply a model

fitting procedure that is similar to estimating a traditional (i.e., non-multilevel) VAR by fitting a series

of multiple regression models (J. D. Hamilton, 1994). In our case, we fit a series of multilevel models,

one for each item. Such an approach can be considered a specific case of the pseudo-likelihood method

(Arnold & Strauss, 1991; Fieuws & Verbeke, 2006) in which not the likelihood itself is optimized to

estimate the model’s parameters, but rather an easier-to-calculate proxy to the likelihood (i.e., the

pseudo-likelihood), which is constructed by considering a set of conditional and/or marginal densities.

Our approach can be illustrated with a simple example (see also Arnold & Strauss, 1991): If one

wants to estimate the parameters of a bivariate normal distribution (two means, two variances and

a correlation) then one can estimate four out of five parameters (means and variances) by relying on

the univariate marginals.

In this study, estimating the model’s parameters is deferred to estimating the parameters from

the marginal distributions of the six variables. As a result, the covariance matrix for random e↵ects

will not be estimated in a single step and not all of the covariance parameters will be estimated

directly. Only eight-by-eight block matrices on the main diagonal from this general matrix pertaining

to the same univariate multilevel analysis (i.e., cov(b
kpj

, b
kpj

0)) are estimated (there are six such

block matrices). The remaining covariances in the 48-by-48 matrix (related to covariances between

random e↵ects of di↵erent univariate models, i.e., cov(b
kpj

, b
k

0
pj

0)) can be estimated in a subsequent

step from the covariances between the predicted random e↵ects. The error correlations, signifying

the common disturbances to di↵erent variables, and the correlations between random e↵ects of the

di↵erent regression equations are not estimated in our approach. However, these parameters can be

estimated in a second step by calculating the correlations between the level 1-residuals and level 2-

residuals of the di↵erent univariate models. Relying on such an approach will probably lead to a small

loss of e�ciency compared to direct estimation. We show by means of the simulation study, described

in the next section, that using our approach, the point estimates of most directly and indirectly

estimated parameters are on average close to the true values.



Appendix 2.A

Simulation study

Goal

In order to investigate the performance of the multilevel-VAR model in recovering the network struc-

ture for the type of data used in this paper, we performed a simulation study. To optimize validity of

the simulation study, we simulated data based on the parameter estimates obtained from the empiri-

cal study and fitted the data with the procedure outlined above and in the main text of this article.

Specifically, we took the estimates based on the results of the items cheerful and worry.

As indicated above, we did not fit the multilevel-VAR model by fitting the multivariate model

at once, but instead by fitting a series of univariate multilevel models. In these models, several of

the parameters can be estimated directly (i.e., all fixed e↵ects and random regression coe�cients,

variances and covariance of random e↵ects parameters within one model), but some of the parameters

could only indirectly be estimated (i.e., the covariances between errors and the covariances between

random e↵ects that are in di↵erent univariate models). Through this simulation study, we aimed to

show that a pseudo-likelihood fitting of the multilevel-VAR model yields a reasonable approximation

of all parameters.

Data simulation model

A multilevel-VAR model with random intercept and slopes was used for the simulation. For reasons of

computational tractability, we have reduced, without loss of generalizability, the original six-variable

multilevel-VAR model to a bivariate model. The model equations are (for j = 1, 2; cheerful and worry

respectively):

Y
pdtj

= �0pdj + �1pdj · Yp,d,t�1,1 + �2pdj · Yp,d,t�1,2 + "
pdtj

, (2.A.1)

where Y
pdtj

represents the measurement for person p (p = 1, 2, . . . , 129) at day d (d = 1, 2, . . . , 6) at

time t of the j-th variable. In addition, it is assumed that the regression coe�cients can be decomposed

as follows (for j = 1, 2), were �
kj

represents the common e↵ect of lagged variable k (for k = 0, this

is the intercept) on the dependent variable j, and b
kpj

is the person-specific deviation of this general

e↵ect:

�0pdj = �0j + b0pj , (2.A.2)

�
kpj

= �
kj

+ b
kpj

. (2.A.3)
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The intercepts (i.e., �01 and �02) are set to 2.87 and 2.04, respectively. The other fixed e↵ects

parameters were fixed to �11 = 0.28, �21 = �0.035, �12 = �0.048 and �22 = 0.26. Where, for example,

�21, stand for the e↵ect of worry on cheerful. The two error terms ("
pt1, "pt2) follow a bivariate normal

distribution with mean vector zero, variances of �2
"1

= 1.3 and �2
"2

= 1.56 respectively and a correlation

of 0.4. The two random intercept components (b0p1, b0p2) come from a bivariate normal population

distribution with zero mean vector, variances 1.2 and 1.1 respectively and a correlation of 0.4. The

four component vectors of random regression weights (b1p1, b2p1, b1p2, b2p2) are multivariate normally

distributed with zero mean vector, variances (0.0169, 0.00810, 0.000784, 0.0256) and correlation of 0.4

among all pairs of components. Note that the random intercepts and random regression weights are

independent.

Design of the simulation study

In our simulation study, we manipulated the number of time points as follows: T = 20, 60, or 500.

The number of participants was N = 20, 129, or 500. We did not cross the factors, but instead, we

started from the settings of the empirical example (i.e., N = 129 and T = 60) and then manipulated

either the number of time points or the number of participants separately. In every condition, the

number of simulated data sets (i.e., replications) was 500.

Results of the simulation study

In all figures, the left plot indicates the three di↵erent settings for the sample size and the right plot

the three di↵erent setting of the number of time-points. All the fixed e↵ects regression coe�cients

(i.e., the �’s referring to intercepts and regression weights) were estimated very accurately within all

di↵erent settings (Figure 2.A.1 and 2.A.2). The variance of the errors and the variance of all person

specific regression weights (i.e., the b’s) including the intercept, are shown in Figures 2.A.3-2.A.5.

From these plots, it can be seen that true point estimations of these parameters are accurate, often

with less subjects or time points than used in the empirical study.

Figures 2.A.6 and 2.A.7 show how accurately the correlations between parameters of the models

were estimated in an indirect way. This was done for the error correlation between the models (i.e.,

the correlation between: "
pdt1 and "

pdt2), the random e↵ects within one model (i.e., the correlation

between: b1p1 and b2p1), and the random e↵ects between the two models (i.e., the correlation between:

b0p1 and b0p2; b1p1 and b1p2; b1p1 and b2p2; b2p1 and b1p2; b2p1 and b2p2). Figure 2.A.6 shows that

although in the first model the correlation between the two random e↵ects of the betas could be

estimated quite accurately with 60 time points and 129 subjects, in the second model the correlation
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Appendix 2.A

between the random e↵ects were estimated less accurately with 60 time points and 129 subjects

than with more time points or subjects. There was also an estimation bias when the correlations

of random e↵ects (b’s) between the models was estimated (Figure 2.A.7). However, the correlation

of the error variances and random intercepts were estimated highly accurately, also between the two

models (Figure 2.A.6). Thus, the random e↵ects, except the random intercepts, were more di�cult

to estimate accurately and more subjects or time points are needed in that case. However, the model

accurately estimated all the parameters that are of immediate relevance for this study.
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Figure 2.A.1: The recovery of the four average beta weights (�11,�21,�12,�22) for a varying number
of participants (right panel, with T = 60) and a varying number of time points (left panel, with
N = 129). The black line indicates the true value, and the red cross indicates the average estimate
(from 500 replications). The grey dots are the 500 individual estimates (jittered along the x-axis
for visual understanding). The middle condition is always the setting corresponding to the empirical
example, with 60 time points and 129 participants.
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Figure 2.A.2: The recovery of the two average intercept coe�cients (�01,�02) for a varying number
of participants (right panel, with T = 60) and a varying number of time points (left panel, with
N = 129). The black line indicates the true value, and the red cross indicates the average estimate
(from 500 replications). The grey dots are the 500 individual estimates (jittered along the x-axis
for visual understanding). The middle condition is always the setting corresponding to the empirical
example, with 60 time points and 129 participants.
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Figure 2.A.3: The recovery of the four variances of the person specific regression weights (b11,b21,b12,b22
see Equation 2.8) for a varying number of participants (right panel, with T = 60) and a varying
number of time points (left panel, with N = 129). The black line indicates the true value, and the
red cross indicates the average estimate (from 500 replications). The grey dots are the 500 individual
estimates (jittered along the x-axis for visual understanding). The middle condition is always the
setting corresponding to the empirical example, with 60 time points and 129 participants.
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Figure 2.A.4: The recovery of the two variances of the person specific intercepts (b01,b02; see Equation
2.7) for a varying number of participants (right panel, with T = 60) and a varying number of time
points (left panel, with N = 129). The black line indicates the true value, and the red cross indicates
the average estimate (from 500 replications). The grey dots are the 500 individual estimates (jittered
along the x-axis for visual understanding). The middle condition is always the setting corresponding
to the empirical example, with 60 time points and 129 participants.
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Figure 2.A.5: The recovery of the variances of the two error terms ("1 and "2) for a varying number
of participants (right panel, with T = 60) and a varying number of time points (left panel, with
N = 129). The black line indicates the true value, and the red cross indicates the average estimate
(from 500 replications). The grey dots are the 500 individual estimates (jittered along the x-axis
for visual understanding). The middle condition is always the setting corresponding to the empirical
example, with 60 time points and 129 participants.
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Figure 2.A.6: The recovery of the error correlations, the random intercept correlations and the cor-
relations of the random e↵ects within model 1 and 2, respectively. The simulation was done for a
varying number of participants (right panel, with T = 60) and a varying number of time points (left
panel, with N = 129). The black line indicates the true value, and the red cross indicates the average
estimate (from 500 replications). The grey dots are the 500 individual estimates (jittered along the
x-axis for visual understanding). The middle condition is always the setting corresponding to the
empirical example, with 60 time points and 129 participants.
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Figure 2.A.7: The recovery of correlations of random e↵ects between the models of cheerful and worry.
The simulation was done for a varying number of participants (right panel, with T = 60) and a varying
number of time points (left panel, with N = 129). The black line indicates the true value, and the
red cross indicates the average estimate (from 500 replications). The grey dots are the 500 individual
estimates (jittered along the x-axis for visual understanding). The middle condition is always the
setting corresponding to the empirical example, with 60 time points and 129 participants.
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Appendix 2.B Figures of the replication study
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Figure 2.B.1: This figure shows the population network of the main data set (left panel) and the vali-
dation dataset (right panel) for five items (C=cheerful, W=worry, F=fearful, S=sad and R=relaxed).
Solid green arrows correspond to positive arrows and red dashed arrows to negative connections. Only
arrows that surpass the significance threshold are shown (i.e., for which the p-value of the t-statistic
is smaller than 0.05). Arrows can be either red, indicating a negative relationship (i.e., � < 0), or
green, indicating a positive relationship (i.e., � > 0). The two networks are almost identical (Pearson
correlation of 0.95, see main text for more information). However, more links are significant in the
main dataset and are shown in the figure than in the validation dataset (using FDR controlled at 5%).
This is likely to be due to the fact that there are more subjects (129 vs. 97) and more time points
(70 vs. 53) in the main dataset than in the validation dataset.
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Figure 2.B.2: This figure shows the inter-individual network of the main dataset (left panel) and
the validation dataset (right panel) for five items (C=cheerful, W=worry, F=fearful, S=sad and
R=relaxed). The thickness of the arrows is based on the size of the standard deviation of the random
e↵ects. To construct the figure, we have put a cuto↵ of 0.1 on the standard deviation and only the
standard deviations above the cuto↵ are shown with a non-transparent arrow.
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3 Assessing temporal emotion dynamics using

networks

Experience sampling methods (ESM; Csikszentmihalyi & Larson, 2014; Trull & Ebner-Priemer, 2013)

and ecological momentary assessment (EMA; Shi↵man & Stone, 1998; Stone & Shi↵man, 1994) are

being increasingly used to study dynamic psychological processes such as mood (aan het Rot et al.,

2012; Hamaker, Ceulemans, Grasman, & Tuerlinckx, 2015; Jahng, Wood, & Trull, 2008; Wichers,

Wigman, & Myin-Germeys, in press). A particularly relevant aspect thereof is their temporal dy-

namics (Nesselroade, 2004). When studying temporal dynamics, the focus is not on detecting a gross

underlying trend, as is often the case in developmental research, but rather on the intricate temporal

dependence of and between variables, or how variables within an individual influence each other or

themselves over time (Brandt & Williams, 2007; Molenaar, 1985; Walls & Schafer, 2006). Often the

models used to study temporal dynamics are multivariate in nature, and both the influence that a

variable has on itself (e.g., how self-predictive is sad mood) as well as its e↵ects on other variables

(e.g., how does sad mood augment or blunt subsequent anger emotions) are analyzed (Koval, Pe,

Meers, & Kuppens, 2013; Kuppens, Stouten, & Mesquita, 2009; Kuppens, Allen, & Sheeber, 2010; Pe

& Kuppens, 2012; Suls, Green, & Hillis, 1998).

One increasingly popular approach to study, visualize, and analyze multivariate dynamics is net-

work analysis (Borsboom & Cramer, 2013; Bringmann, Vissers, et al., 2013; Bringmann, Lemmens,

Huibers, Borsboom, & Tuerlinckx, 2015; Fried et al., 2014; McNally et al., 2015; Ruzzano, Borsboom,

& Geurts, 2015; Wichers, 2014). This network perspective leads to a new way of thinking about

the nature of psychological constructs, phenomena or processes by o↵ering new tools for studying

dynamical processes in psychology. In the network approach, psychological constructs, processes or

phenomena are represented as complex systems of interacting components (Barabási, 2011; Costantini

et al., 2015; Cramer, Borsboom, et al., 2012). For instance, emotional well-being can be considered

to consist of a number of dynamically interacting components, such as behavioral, physiological, and

experiential emotion components. Likewise, mental disorders can be viewed as a result of the mu-

tual interplay of symptoms of the disorder. These components interact with each other across time,

making up the internal dynamics and by that, the very nature of the phenomenon under study. It is
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3. Assessing temporal emotion dynamics using networks

these dynamics that are studied in a network approach (Borsboom et al., 2011; Cramer et al., 2010;

Schmittmann et al., 2013). In this paper, we will illustrate the network approach using an empirical

example focusing on the relation between the daily fluctuations of emotions and neuroticism.

The network approach

A network consists of nodes (i.e., the components of the phenomenon, construct or process) and edges

(or links) connecting the nodes (Barrat, Barthelemy, Pastor-Satorras, & Vespignani, 2004). In our

approach, the links have a certain strength that indicates the strength of the (positive or negative)

relationship between the nodes (Opsahl et al., 2010). The nodes and edges can be easily visualized

graphically (see for example Figure 3.1). Networks can be constructed based on di↵erent kinds of data

such as cross-sectional or longitudinal data and using di↵erent kinds of models for inferring the edges.

Depending on the data and model used to infer the network, the edges connecting the nodes have a

specific meaning. In this article, we focus on longitudinal data and on the vector autoregressive (VAR)

model (Brandt & Williams, 2007). A VAR-based network allows studying the dynamics among the

components that constitute a certain construct, phenomenon or process across time. For example, in

the network of Figure 3.1, the edges on the nodes are the self-loops, or the e↵ect the emotion has on

itself from one time point to the next, and the edges between the emotions are the cross-regressive

e↵ects, or the e↵ect a variable has on other variables from one time point to the next, controlling for

the other variables.

In addition, several features of the network can be derived that can shed light on central properties

of the dynamical interplay between the components or nodes. Such features can involve the overall

network or specific parts of the network. One interesting characteristic of the overall network is its

density, which indicates how strongly the network is interconnected. The denser a network is, the

more strongly the variables interact (Newman, 2010). Another, more specific, feature of the network

is node centrality. Centrality refers to the importance or how focal one specific variable or node is in

the network (Freeman, 1978).

Empirical example

We will illustrate how networks can be inferred using a multilevel extension of the VAR model

(Bringmann, Vissers, et al., 2013), and how they can be used to gather new insights on temporal

emotion dynamics. In particular, we will focus on the relation between emotion dynamics and neu-

roticism in healthy subjects, using two previously collected ESM datasets. Neuroticism is one of the

main dimensions reflecting individual di↵erences in personality, and is particularly relevant for emo-

tional experience. Specifically, it reflects a tendency to experience negative emotions, and is considered
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Angry

SadHappy

Figure 3.1: A hypothetical example of an emotion network. The three nodes are the three emotions:
Happy, Angry and Sad. The red arrows are the negative (i.e., inhibitory) edges and the green arrows
the positive (i.e., excitatory) edges. The thickness of the arrows represents the strength of the edges.
For example, the edges on the nodes (the self-loops) are the strongest links in the network.

to constitute a broad risk factor for mood disorder and psychopathology (Barlow, Sauer-Zavala, Carl,

Bullis, & Ellard, 2014).

In this application, we will first look at the general patterns of edges connecting the emotion

variables, which are referred to as the population networks. Second, we will assess features of the

network structure by studying the density of the individual emotion networks and their relation to

neuroticism. In a third step, we will study whether several centrality measures of the individual

networks (strength, closeness and betweenness) and the self-loops are related to neuroticism. To

our knowledge, this is the first time that both the full temporal emotion network and its parts are

studied and related to neuroticism, giving a more complete picture of moment-to-moment dynamics

in emotion as a function of the trait of neuroticism. The method used here will be described in detail.

Moreover, Matlab and R code to replicate the main results of the first dataset will be given, so that
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3. Assessing temporal emotion dynamics using networks

other researchers can apply the network method to their own data (see online material).1

3.1 Method

Dataset 1

Parts of dataset 1 have been published elsewhere (Bringmann, Vissers, et al., 2013; Koval et al.,

2012; Pe, Koval, & Kuppens, 2013; Pe, Raes, et al., 2013). 95 undergraduate students from the

University of Leuven in Belgium (age: M = 19 years, SD = 1; 62% female) participated in an

experience sampling method (ESM) study. Over the course of seven days, participants carried a

palmtop computer on which they had to fill out questions about mood and social context in their

daily lives 10 times a day. Participants were beeped to fill out the ESM questionnaires at random

times within 90-minute windows. They had to rate, among other things, their current feelings of

negative and positive emotions on a continuous slider scale, ranging from 1 (not at all, e.g., angry)

to 100 (very, e.g., angry). On average, participants responded to 91% of the beeps (SD = 7 %). In

order to avoid selection bias, we analyzed all six emotion variables measured in this study (positive

a↵ect: relaxed and happy; negative a↵ect: dysphoric, anxious, sad and angry), which were selected to

capture all quadrants of the a↵ective circumplex defined by the dimensions of valence and arousal (see

e.g., Russell, 2003). Furthermore, neuroticism was assessed with the Dutch version of the Ten Item

Personality Inventory (Gosling et al., 2003; Hofmans et al., 2008), resulting in a score ranging from

1 to 7 (M = 3.4; SD = 1.5). Participants were selected from a large pool of participants to ensure

a wide range of depression scores. Therefore, the participants in this dataset have a wider range of

neuroticism scores than the participants in dataset 2.

Dataset 2

Parts of this dataset have been published elsewhere (Kuppens, Champagne, & Tuerlinckx, 2012;

Kuppens, Oravecz, & Tuerlinckx, 2010; Pe & Kuppens, 2012). In this study, the participants consisted

of 79 undergraduate students from the University of Leuven in Belgium (age: M = 24, SD = 8; 63 %

female). A similar ESM procedure as in the first dataset was used. Participants were beeped to fill

out the ESM questionnaires 10 times a day, again on a scale ranging from 0 to 100, but for a longer

time period, namely 14 consecutive days. We extracted all emotion variables, which were 10 in this

case (positive a↵ect: relaxed, happy, satisfied, excited; negative a↵ect: dysphoric, anxious, irritated,

sad, stressed and angry), again selected to cover all quadrants of the a↵ective space. Participants

responded on average to 82% of the programmed beeps (SD = 10). Neuroticism was assessed with

1To use this code please read first the R-file.
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3.1. Method

the 12-item scale of the Dutch version of the NEO Five-Factor Inventory (Hoekstra et al., 1996), which

resulted in a score ranging from 1 to 5 (M = 3.0, SD = 0.7).

Estimating the networks

To assess temporal emotion dynamics and their relation to neuroticism, an emotion network was

created for each individual. The edges or links of the individual networks were obtained using a

multilevel VAR model (Bringmann, Vissers, et al., 2013; Bringmann et al., 2015). The standard VAR

model (Brandt & Williams, 2007) estimates the extent to which a current emotion (time point t) can

be predicted from all other emotions at a previous moment (time point t � 1), corresponding to the

network edges. Each emotion is regressed on its lagged values (autoregressive e↵ect) and the lagged

values of each of the other emotions (cross-lagged e↵ects). In the present context, time t� 1 and time

t refer to two consecutive beeps within the same day (overnight lags were removed). It is assumed

that the data are stationary, implying that the mean and the moment-to-moment interactions of the

emotion processes stay stable over time (Chatfield, 2003; Hamaker & Dolan, 2009). As we study

multiple individuals, we implement the VAR model within a multilevel modeling framework, to allow

for random, person-specific auto- and crossregressive e↵ects, and so that we can model the temporal

emotion dynamics not only within an individual, but also at group level, estimating both average or

population (fixed) and individual (random) e↵ects.

Univariate multilevel VAR analyses are conducted for each emotion separately using restricted

maximum likelihood estimation. This results in 6 univariate regression equations for the first dataset

and 10 univariate regression equations for the second dataset. Taking the first dataset with 6 emotions

as an example, we get the following equation for each emotion j (i.e., relaxed, happy, dysphoric,

anxious, sad and angry, or j = 1, . . . , 6, respectively):

Y
ptj

= �0pj + �1pj · relaxedp,t�1 + �2pj · happyp,t�1 + �3pj · dysphoricp,t�1

+ �4pj · anxiousp,t�1 + �5pj · sadp,t�1 + �6pj · angryp,t�1 + "
ptj

.
(3.1)

Thus, for dataset 1, Y
ptj

represents the value for the j-th emotion for person p (p = 1, 2, . . . , 95)

at beep t (t = 2, . . . , 10). The regression coe�cients (i.e., the intercept and the regression weights) of

this equation 3.1 are decomposed as follows:

�
kpj

= �
kj

+ b
kpj

, (3.2)

where the slopes �
kj

(k > 0, since k = 0 codes for the intercept) represent the fixed e↵ects (the

edges in the network), or the extent to which the emotions at time t � 1 can predict the emotion j
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3. Assessing temporal emotion dynamics using networks

at time t over all individuals. The person-specific deviation (random e↵ect) from the average e↵ect

is captured in the component b
kpj

. The random e↵ects are assumed to come from a multivariate

normal distribution, estimating an unstructured covariance matrix of the random e↵ects. Using the

empirical Bayes estimates of the random e↵ects, emotion networks for each individual are constructed.

Specifically, for each edge in the network, the individual random e↵ect is added to the fixed e↵ect

for each emotion variable. For instance, the edge from emotion k to emotion j has a value of �
kpj

=

�
kj

+ b
kpj

in the individual network of person p. To reduce the likelihood of errors in the analyses, all

multilevel analyses were run in Matlab (Mathworks, Inc.) as well as in Mplus (Muthén & Muthén,

2012) and by di↵erent researchers. Visualization and computation of the measures of centrality relied

on the qgraph R package (Epskamp et al., 2012).

Regarding the analysis, there are three important additional aspects to mention here. First, as we

estimate multivariate networks with both autoregressive and cross-lagged e↵ect, all predictors were

person-mean centered (centered around each individual’s mean score) before the analysis (Hamaker

& Grasman, 2014). Note that this might lead to a slight underestimation of the autoregressive e↵ects.

Second, to control for di↵erences in variability between individuals, i.e. to make sure that associations

between neuroticism and network characteristics were not driven by di↵erences in emotion variance,

we conducted analyses involving both non-standardized and standardized coe�cients.2 Within-person

standardization of the coe�cients was done as described in Schuurman, Ferrer, de Boer-Sonnenschein,

and Hamaker (2016).3 Third, note that the edges only represent the unique direct e↵ects of the

variables and not the shared e↵ects (just as in standard multiple regression; Bulteel, Tuerlinckx,

Brose, & Ceulemans, in press). This means that a part of the explained variance cannot be taken

into account and thus an edge might be less strong or stronger if this shared variance was taken into

account.

3.2 Network analyses

The population networks

Before we focus on individual networks and their relationship to neuroticism, we will first look at the

average networks. These population networks show the general patterns of connections between the

emotion variables. The edges in the population networks represent the slopes �
kj

(k > 0; i.e., the

fixed e↵ects). The population networks are presented in Figure 3.2, made with the R-package qgraph

(Epskamp et al., 2012).

2One exception is the analyses using self-loops. In order to standardize the edges of the network, the standard
deviations of the predictor and outcome variables are used. Since a self-loop has the same predictor as outcome variable
the standardized and unstandardized edges are equal.

3Note that there are di↵erent ways to standardize that lead to slightly di↵erent results.
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3.2. Network analyses

Density

For each individual network, the density was computed of 1) the overall network (all emotions), 2) the

negative emotions only and 3) positive emotions only. This was done by averaging over the absolute

values of the slopes or edges in the network of the emotions of interest. We used the absolute values

so that negative and positive edge values do not cancel each other out.

Further, to illustrate the relation between density and neuroticism, we created three neuroticism

groups (i.e., low, medium and high neuroticism) by ranking the neuroticism scores. In a next step,

we constructed networks for the low and high neuroticism group separately (eventually resulting in

two networks for overall, negative and positive emotion density for both datasets). If we focus on

the overall network for simplicity of explanation, then the arrows indicate the edge strengths of the

temporal connections between emotions. The average absolute value of the edge strength and the

corresponding standard deviation (SD) is calculated across all participants and pairs of variables.

Next, edges get classified: 1SD below the mean (weak connection strength, dotted arrows), between

1SD below and above the mean (moderate connection strength, dashed arrows) and 1SD above the

mean (strong connection strength, solid arrows).

Centrality

We calculated the most common centrality measures degree (or in case of a weighted network the

term strength is used), closeness and betweenness. Each centrality measure defines centrality of a

node (variable) in the network in a di↵erent way (Freeman, 1978; Newman, 2010). To explain these

concepts, it is instructive to think metaphorically that the nodes transmit information across time

to each other. As the network used here is a directed network, we can study both the out-strength

centrality and the in-strength centrality. Out-strength indicates the (summed) strength of the outgoing

edges or how much information a node sends away to the other nodes, and thus a node with a high out-

strength centrality tends to excite or inhibit many other nodes in the network. In-strength indicates

the strength of the incoming edges, or how much information a node receives from the other nodes,

and thus its susceptibility to being excited or inhibited by other nodes in the network.4 Both out-

and in strength take only into account the edges to which a node is directly connected.

A node high in closeness centrality is at a relatively short distance from the other nodes in the

network, and is thus likely to be influenced quickly by them. Closeness thus represents how fast an

emotion can be reached from the other nodes in the network. Distances between nodes are calculated

based on edge strength, taking into account direct and indirect edges connecting the node to other

nodes (See for more information: Borgatti, 2005; Costantini et al., 2015; Opsahl et al., 2010).

4We thank an anonymous reviewer for suggesting this interpretation.
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3. Assessing temporal emotion dynamics using networks

Betweenness centrality is a measure of how many times a node appears on the shortest paths

between other nodes in the network. Thus, a node with a high betweenness centrality is a node

through which the information in the network has to pass often and can be seen as an important node

in funneling the information flow in the network. This measure also takes into account direct and

indirect edges connecting the node to other nodes. Note that all the centrality measures are based on

the absolute values of the edges.

The relation between the network characteristics and neuroticism

Neuroticism scores of all individuals were correlated with density of the individual networks (calculated

on the overall, negative and positive networks) and centrality measures (out-strength, in-strength,

closeness and betweenness) using Pearson’s product moment correlations. Since the centrality mea-

sures are concerned with the influences between variables or nodes (cross-regressive e↵ects) in the

network, self-loops or autoregressive e↵ects (in the emotion literature also known as emotional inertia;

Suls et al., 1998) are ignored in these focal network measures. Therefore, the correlation between the

self-loops and neuroticism was calculated separately for each emotion.

3.3 Results

The networks in Figure 3.2 represent the average patterns between the emotions. Only edges that were

significant (i.e., a p-value of less than 0.05) are shown, which is purely for visualization purposes. The

figures show that emotions can either augment or blunt each other (Pe & Kuppens, 2012). Augmenting

refers to the increase of the experience of other emotions. For example, there exist clusters of negative

and positive emotions. Within these clusters, emotions of the same valence tend to in general augment

each other. In contrast, emotions of di↵erent valence (for example, sad and happy) seem to blunt or

decrease each other. Furthermore, the self-loops in the networks are among the strongest edges. For

example, in general when a person feels sad, (s)he is not only less likely to feel happy at the next

moment, but also likely to still experience sadness at the next moment.5 These results correspond with

the theoretical expectations and empirical findings based on the nomothetic relations in an emotion

circumplex, namely that emotions of the same valence are more likely to be correlated with each other

than with emotions of di↵erent valence (Vansteelandt, van Mechelen, & Nezlek, 2005).

The results in Table 3.1 show a consistent and strong positive relation between neuroticism and

overall emotion density as well as negative emotion density. This pattern is not only consistent

across datasets, but also when controlling for variability (i.e., after standardization), indicating that

5Note that the number of possible edges is proportional to the number of nodes and thus the network for dataset 2
is not necessarily more strongly connected than the network for dataset 1.
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Figure 3.2: This figure shows the population network of the dataset 1 (left panel) and the dataset 2
(right panel). Solid green edges correspond to positive and dashed red edges to negative connections.
Only edges that surpass the significance threshold are shown (i.e., for which the p-value of the t-
statistic is smaller than 0.05). The emotions in the networks are organized so that they align with
the emotion circumplex from which they were selected.

individuals high in neuroticism also have a significantly denser overall network and negative emotion

network than individuals low in neuroticism. The results for the positive emotion network were less

consistent. The relation between the positive emotion network and neuroticism was only significant in

the second dataset and was less strong than the relationship between neuroticism and the overall and

negative emotion networks. Figures 3.3 and 3.4, focusing on the high and low ends of neuroticism,

also features this pattern: The di↵erence between emotion density in individuals with a high and low

score in neuroticism is more pronounced for the overall emotion density and negative emotion density

than for positive emotion density.

Table 3.1: Density and its relation to neuroticism

Non-standardized Standardized
Data 1 Data 2 Data 1 Data 2

Emotion Network r p r p r p r p
Overall .49 <.001 .42 <.001 .49 <.001 .41 <.001
Negative .51 <.001 .44 <.001 .51 <.001 .43 <.001
Positive .12 .26 .30 .008 .11 .27 .30 .007
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Figure 3.3: The emotion networks for dataset 1 for individuals with a high and low neuroticism
score. In the network, the arrows indicate the absolute strengths of the temporal connections between
emotions. Arrows that are dotted indicate weak connection strength, arrows that are dashed indicate
moderate connection strength and bold arrows indicate strong connection strength.

Tables 3.2 and 3.3 show that there is a di↵erence across the datasets in the out- and in-strength

centrality. In dataset 1 individuals with high neuroticism scores have significantly high out-strength
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Figure 3.4: The emotion networks for dataset 2 for individuals with a high and low neuroticism
score. In the network, the arrows indicate the absolute strengths of the temporal connections between
emotions. Arrows that are dotted indicate weak connection strength, arrows that are dashed indicate
moderate connection strength and bold arrows indicate strong connection strength.

centrality for all negative emotions and even for the positive emotion ‘happy’. However, none of

these results replicated for dataset 2, although the correlations are consistently positive. In contrast,
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3. Assessing temporal emotion dynamics using networks

the positive significant relation between neuroticism and in-strength centrality of all five emotions

(happy was non-significant in both datasets) of dataset 1 was also found in dataset 2. Thus, there is

more evidence for a positive relation between in-strength centrality of emotions and neuroticism than

out-strength centrality of emotions and neuroticism.

Table 3.2: Out-strength centrality and its relation to neuroticism

Non-standardized Standardized
Data 1 Data 2 Data 1 Data 2

Out-strength r p r p r p r p
Angry .441 <.001 .219 .052 .495 <.001 .238 .035

Dysphoric .266 .009 .126 .267 .249 .015 .088 .44
Sad .407 <.001 .085 .458 .402 <.001 .029 .799

Anxious .289 .004 .188 .098 .313 .002 .252 .025
Relaxed .157 .128 .15 .188 .18 .082 .195 .085
Happy .42 <.001 .204 .071 .431 <.001 .252 .025
Satisfied .298 .008 .331 .003
Excited .361 .001 .349 .002
Irritated .315 .005 .35 .002
Stressed .283 .012 .267 .017

Table 3.3: In-strength centrality and its relation to neuroticism

Non-standardized Standardized
Data 1 Data 2 Data 1 Data 2

In-strength r p r p r p r p
Angry .357 <.001 .232 .040 .346 .001 .212 .060

Dysphoric .407 <.001 .406 <.001 .394 <.001 .423 <.001
Sad .348 <.001 .338 .002 .376 <.001 .352 .002

Anxious .374 <.001 .470 <.001 .371 <.001 .395 <.001
Relaxed .391 <.001 .347 .002 .341 .001 .280 .013
Happy �.003 .98 �.093 .416 .024 .815 �.196 .084
Satisfied �.068 .553 �.053 .641
Excited �.057 .616 �.048 .672
Irritated .192 .09 .163 .152
Stressed .151 .184 .130 .254

As is apparent in Table 3.4, closeness centrality is positively related to neuroticism for almost all

emotions (except ‘stressed’) in both datasets, even after standardization. This is in contrast to the

relationship between betweenness centrality (influencing the overall information flow) and neuroticism

(see Table 3.5). Although in some cases the relation was significant, it was not very strong, and none

of the findings replicated in both datasets.

Finally, regarding the self-loops and their relation to neuroticism, it is evident that only the self-

loops of emotions ‘sad’ and ‘anxious’ were significantly related to neuroticism in both datasets (see

Table 3.6).
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Table 3.4: Closeness centrality and its relation to neuroticism

Non-standardized Standardized
Data 1 Data 2 Data 1 Data 2

Closeness r p r p r p r p
Angry .493 <.001 .386 <.001 .503 <.001 .438 <.001

Dysphoric .373 <.001 .22 .052 .358 <.001 .261 .020
Sad .501 <.001 .363 .001 .475 <.001 .381 .001

Anxious .305 .003 .312 .005 .310 .002 .381 <.001
Relaxed .353 <.001 .351 .002 .394 <.001 .368 .001
Happy .436 <.001 .386 <.001 .481 <.001 .435 <.001
Satisfied .408 <.001 .437 <.001
Excited .447 <.001 .450 <.001
Irritated .456 <.001 .464 <.001
Stressed .376 .001 .367 0.001

Table 3.5: Betweenness centrality and its relation to neuroticism

Non-standardized Standardized
Data 1 Data 2 Data 1 Data 2

Betweenness r p r p r p r p
Angry .156 .131 �.033 .771 .133 .198 �.093 .414

Dysphoric .151 .143 .287 .010 .179 .083 .282 .012
Sad .120 .248 .291 .009 .124 .230 .160 .158

Anxious .096 .354 .324 .004 .027 .797 .299 .007
Relaxed �.101 .329 �.089 .434 �.116 .263 �.046 .687
Happy �.058 .579 �.100 .382 �.094 .364 �.043 .704
Satisfied �.271 .016 �.163 .152
Excited �.047 .679 �.056 .621
Irritated �.016 .888 �.069 .548
Stressed �.225 .046 �.150 .187

Table 3.6: Self-loops and their relation to neuroticism

Data 1 Data 2
Self -loops r p r p
Angry .226 .028 .219 .052

Dysphoric .295 .004 .167 .141
Sad .417 <.001 .265 .018

Anxious .257 .012 .362 .001
Relaxed �.122 .240 �.133 .243
Happy .169 .102 .303 .007
Satisfied .108 .341
Excited .327 .003
Irritated .128 .262
Stressed .240 .033

Note: In order to standardize the edges of the network
the standard deviations of the predictor and outcome
variables are used. Since a self-loop has the same pre-
dictor as outcome variable the standardized and unstan-
dardized edges are equal.
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3.4 Discussion

In this study, we found that for individuals with high levels of neuroticism, the associations found in

the population level network were qualitatively the same but more pronounced (i.e., denser) than for

their less neurotic peers. This e↵ect was especially clear in the negative emotion network and was

found in both datasets irrespective of standardization. Although in some cases the positive emotion

network was significantly denser in individuals with a high neuroticism score, this e↵ect was rather

weak and not consistent across both datasets. These findings are noteworthy because they further

reinforce the idea that neuroticism is characterized specifically by negative emotions that tend to

co-occur (even across time). This is also in line with the results of (Pe et al., 2015), who found that

individuals with the clinical diagnosis of depression have especially a denser negative emotion network

than non-depressed individuals (see also Wigman et al., 2015 for a similar result).

These results also support previous research on early warning signs reflecting vulnerability for

emotional disorder. Individuals who experience a higher autocorrelation have slower dynamics, which

can be seen as predictive of a transition into depression (van de Leemput et al., 2014). In the same

way, people who are highly neurotic and have strong self-loops (autoregressive e↵ects) and strong

connections between their emotions (cross e↵ects) can be seen as being prone to experience a critical

slowing down and thus an episode of depression.

Regarding the relation between centrality measures of the specific emotions and neuroticism, the

results were more mixed. Although in the first dataset there were strong associations between the out-

strength of individual emotions and neuroticism, this was not replicated in the second dataset. This

could be due to the larger di↵erences in neuroticism between individuals in the first versus the second

dataset; alternatively these di↵erences may reflect sampling error, as centrality indices are composites

of many distinct parameters each of which is subject to random fluctuations due to the sampling of

individuals from the population and the sampling of time points within individuals. The association

between in-strength centrality and neuroticism, however, did replicate: Individuals experiencing a

high degree of neuroticism were more likely to have a network in which angry, dysphoric, sad, anxious

or relaxed had a high in-strength centrality, i.e., these emotions were more likely to be directly a↵ected

by the other emotions at the next time point.

Moreover, closeness centrality (how fast an emotion variable can be reached) was positively related

with neuroticism for all emotions except for stressed. Betweenness centrality (the importance of a

variable in funneling the emotion flow), on the other hand, did not reveal a clear association with

neuroticism. Finally, the self-loops indicated that individuals with higher emotional inertia or overspill

of especially the emotions sad and anxious were more neurotic. This is in line with previous research,

which found that high negative emotional inertia or the spillover of negative emotions was linked to
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neuroticism (Suls et al., 1998; Suls & Martin, 2005).

Thus, the more strongly connected emotion networks in highly neurotic individuals seem to be

driven by in-strength centrality or the fact that emotions are a↵ected by the other emotions of the

network in a negative way (negative emotions get augmented whereas relaxed gets mostly blunted by

the other emotions). Additionally, an important feature of the networks of highly neurotic individuals

seems to be that most emotions can be reached fast (closeness centrality). These results show that,

to better understand the relationship between neuroticism and emotions, not only the full network

density should be taken into account, but also the local structure of the network.

A limitation of this study is its generalizability. Even though the results often replicated in

the two datasets, in both datasets the participants were undergraduate students living in Belgium

and the studies were conducted in the same lab. To be able to generalize the results, it would be

interesting to use studies from other labs with di↵erent participants (e.g., older individuals and from

di↵erent countries) to replicate the results. In addition, only a limited number of emotions were

assessed, especially regarding positive emotions. Additionally, only the unique e↵ects of the edges

in the network are taken into account and thus a (possibly large) part of the explained variance is

not included in the network. Solutions to take both unique and shared variance into consideration,

such as the relative importance matrices, are currently only suitable for VAR models, and are not

straightforward to generalize to a multilevel framework (Bulteel et al., in press). A further problem

concerns spurious relationships in networks. As emotion processes are complicated dynamic systems

it is unlikely that we have captured the full emotional process with the limited number of variables

used in this paper, and thus spurious relationships might have been revealed. A promising solution to

see if an edge is truly direct or spurious is through the use of ancestral graphs, which have been used

in fMRI research for studying connectivity. Ancestral graphs are able to explicitly model whether

there are relevant variables missing from a network model (Bringmann, Scholte, & Waldorp, 2013;

Waldorp, Christo↵els, & van de Ven, 2011). Future research should focus on developing these kinds

of techniques further so that they can also be used in multilevel analyses.

As this study was based on mere correlations between neuroticism and emotions networks, it would

be fruitful to have a more experimental setup in which one studies temporal emotion dynamics within

individuals having di↵erent levels of neuroticism at di↵erent points in time. It is likely that individuals

do not experience the same level of neuroticism continuously (Fleeson, 2001, 2004). Therefore, it would

be interesting to see if in periods when neuroticism is, for example, less severe, one indeed would find

less dense emotion networks than in periods when neuroticism is more severe. Note that in order to

study such changing dynamics, extensions of the multilevel VAR technique will be needed, such as

the multilevel threshold autoregressive model (de Haan-Rietdijk, Gottman, Bergeman, & Hamaker,

2014) or a time-varying autoregressive model (Bringmann et al., in press).
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In this paper we have illustrated some of the possibilities of the network approach for studying

temporal dynamics of psychological phenomena. More specifically, we have applied the network ap-

proach to an empirical example: the daily fluctuations of emotions and neuroticism. Whereas most

studies have focused on aggregated or summed negative emotions and found that individuals with

neuroticism tend to have a longer recovery of their negative emotions (i.e., higher emotional inertia;

Suls & Martin, 2005), network analyses give a deeper understanding of this process. We have shown

that there are emotion-specific e↵ects, and moreover, it seems that the inflow and the speed of flow

from other emotions was especially driving the stronger connectivity in more neurotic individuals.

These new ways of analyzing emotions and other psychological phenomena can provide important

information for better understanding how emotions are related to psychopathology, and for example

how individuals get stuck in their emotions.

64



4 Revealing the dynamic network structure of the

Beck Depression Inventory-II

Major Depressive Disorder (MDD) is a complex and burdensome mental health disorder made up of a

wide variety of symptoms (APA, 2000; Hardeveld, Spijker, De Graaf, Nolen, & Beekman, 2010; Kessler

et al., 2003; WHO, 2001). Structured interviews and questionnaires, such as the Hamilton Depression

Rating Scale (HDRS; M. Hamilton, 1960) and Beck Depression Inventory (BDI & BDI-II; Beck, Ward,

Mendelson, Mock, & Erbaugh, 1961; Beck, Steer, & Brown, 1996) are important and commonly used

tools to screen for, study, and follow the course of MDD (Beck, Steer, Ball, & Ranieri, 1996). In

longitudinal studies, a total score, which results from simply adding all symptom scores, is often used

as a measure of changes in depression severity. Relatively few studies use a more fine-grained analysis,

in which the reduction of depression severity is studied by examining specific (clusters of) symptoms

of depression instead of using the total score (e.g., Bhar et al., 2008; Fournier et al., 2013; Stewart &

Harkness, 2012).

What all the above studies have in common is that they are based on the latent variable model.

According to this model, symptoms of a given disorder are assumed to share an essential property;

namely, their causal dependence on a latent variable, from which all symptoms arise (Borsboom,

2008; Kendler et al., 2011). In this perspective, symptoms experienced by patients are merely e↵ects

of the relevant latent variable (in this case depression). Standard models assume the symptoms to be

statistically independent given the latent variable, and as a result, symptom associations are viewed

to be spurious (Borsboom, 2008). Specifically, in the standard model, symptoms are not considered

to have autonomous influence on one another. The latent variable approach, as utilized in standard

models, is therefore not suitable to examine the dynamic relations between symptoms. The recently

developed network approach (Cramer et al., 2010) steps away from this latent variable model by

proposing that research should no longer focus exclusively on the mean level of symptoms or change

therein (e.g., an overall score or a reduction of symptoms). Instead, this approach emphasizes that

clinical research should also focus on the relation between individual symptoms from one time point

to another, which we denote here as short-term dynamics.1

1Note that short-term dynamics refers to the dynamics between time points that are close to one another (e.g. time
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The importance of examining these short-term dynamics is supported by various sources. First,

theories of treatments for depression tend to focus on the short-term symptom dynamics when de-

scribing their proposed mechanisms of change. For example, according to Beck’s cognitive theory

(Beck, 1979), change in cognitive processes (e.g. negative thinking) leads to changes in symptoms

such as a↵ect (Beck, 1964; Rush, Kovacs, Beck, Weissenburger, & Hollon, 1981). Second, in clini-

cal practice it is commonly observed that if patients experience relief in one symptom (for example

sleeping problems), other symptoms start to wane as well, indicating the start of recovery; this is

especially notable when symptoms are systematically assessed at the start of each therapy session,

as is the case in cognitive therapy (Beck, 1979). Third, recent studies indicate that depression risk

factors and stressful life events have di↵erential e↵ects on depressive symptoms (Cramer, Borsboom,

et al., 2012; Fried et al., 2014). As Cramer, Borsboom, et al. (2012) showed, correlations between

symptoms were directly influenced by the stressful life events and could not be explained by changes

in an underlying common cause, in this case the risk to develop depression. This further supports the

idea that symptoms have an autonomous influence on one another. Being able to objectively describe

such symptom-by-symptom interactions can give important clues for clinical research and practice.

Apart from their substantive plausibility, network approaches open up a new range of research

questions. For example, estimating a network of symptoms from depression questionnaires allows for

an objective assessment of the centrality of symptoms (Boccaletti et al., 2006; Opsahl et al., 2010).

Symptoms with a central position in the network are probably the most important or influential ones

and are therefore likely to cause the symptom spread to continue. Studying these central symptoms

can give clues for further clinical research. One could investigate, for instance, the commonly held

assumption that anhedonia (loss of pleasure and interest) and depressed mood are central symptoms

of depression as stated by the most prevalent diagnostic systems DSM-IV-TR (APA, 2000) and ICD-

10 (WHO, 2008). In addition, once the network has been estimated, the community structure of the

network can be examined (Girvan & Newman, 2002). A community is present if some clusters of

symptoms are more strongly interconnected with each other than with symptoms that are not part

of the cluster. In this way, the dynamic architecture of depression can be investigated.

This paper will be the first to investigate the short-term dynamics of one of the most widely

used psychological questionnaire for depression: the Beck Depression Inventory (BDI-II). Inspired by

the possibilities of the network approach, we will apply a novel method developed by Bringmann,

Vissers, et al. (2013) that is able to explore these symptom dynamics, and infer a network structure

of the BDI-II symptoms. Until recently, it was not possible to infer these kinds of directed and

weighted networks from clinical questionnaires since two important requirements for studying short-

point t � 1 and t). This in contrast to looking at changes in average values (mean levels), which can also be seen as a
long-term dynamics. However, we do not use the latter term, since the term “change in mean level” is more intuitive.
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term dynamics, intensive longitudinal data in which a set of symptoms is measured frequently across

time, and a suitable statistical method, were lacking. Intensive longitudinal data is still sparse, but

in a recent study of Lemmens et al. (2011, 2015) such data for the BDI-II were collected. Second, the

newly developed vector autoregressive (VAR) multilevel method, which is a combination of multilevel

(hierarchical) and time series models, is suited for analyzing these kinds of clinical longitudinal data.

These data have rather short time series (ca. 20 time points) for a large sample of patients (Bringmann,

Vissers, et al., 2013). Note that since only few studies have investigated single specific (clusters of)

symptoms of the BDI-II or even interactions between symptoms in general, all analyses are exploratory.

The structure of the paper is as follows: First, we will infer the network(s) representing the short-

term dynamics of the BDI-II symptoms. Second, we will study the centrality of symptoms. Based on

the DSM-IV and ICD-10, one would expect the BDI-II items that are intuitively most closely related

to the main symptoms, anhedonia and depressed mood (namely items: loss of interest, loss of pleasure

and sadness), to be the most central ones in the network(s). In the third and last part, we will analyze

whether communities are present in the BDI-II network(s). Since the network(s) consists of a fair

number of symptoms (i.e., 21), we expect the emergence of new clusters of symptoms or community

structures.

4.1 Method

Data

The data in the current study come from a large randomized clinical trial (RCT), which examined the

e↵ectiveness, relapse prevention and mechanisms of change of Cognitive therapy (CT) vs. Interper-

sonal psychotherapy (IPT) for depression (Lemmens et al., 2011, 2015). In this study, 182 patients

(age between 18 and 65) with a DSM-IV diagnosis of Major Depressive Disorder (MDD) were ran-

domly allocated to one of three conditions: (a) CT (n = 76), (b) IPT (n = 75), or (c) an 8-week

waiting-list control (WLC) condition followed by treatment of choice (CT or IPT; n = 31). In the

current study, we did not di↵erentiate between patients who started therapy immediately and who

started after 8 weeks. This resulted in a sample size of 99 for the CT condition (mean age of 40 years

and SD = 12; 80% female) and a sample size of 83 for the IPT condition (mean age of 41 years and

SD=12; 64% female).

There were no significant di↵erences in demographic and clinical characteristics between the

groups. Each patient participated in 3 to 20 weekly individual sessions, depending on the progress of

the patient or due to drop out. On average, patients completed 14 sessions (SD = 5).2 The BDI-II

2Analyses indicated that there were no di↵erences in demographic and clinical characteristics between subjects that
dropped out and those who finished therapy (at least 12 sessions).
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was administered before each session to assess depression severity. Of the 2661 sessions, 2.5% of the

BDI-II data were missing. Further details concerning the design of the trial and e↵ectiveness of the

interventions have been fully reported elsewhere (Lemmens et al., 2011, 2015).

Beck Depression Inventory-II (BDI-II)

The Beck Depression Inventory-II (BDI-II Beck, Steer, & Brown, 1996; van der Does, 2002) is one of

the most widely used and empirically validated questionnaires for screening depression. The BDI-II

is a self-report questionnaire measuring the severity of depression with 21 items. Each item is rated

on a 4 point Likert-scale ranging from 0 to 3. The total score, ranging from 0 to 63, is constructed by

adding the item scores, with higher scores reflecting more severe depressive symptomatology.

Interventions

CT and IPT are two of the most empirically validated psychotherapies used for treating depression

(Cuijpers et al. 2008, 2011; Hollon et al. 2002). CT is based on Beck’s cognitive theory (Beck,

1979), which states that depression results from maladaptive information-processing strategies that

are maintained by dysfunctional behavioral responses. CT focuses on identifying and changing dys-

functional cognitions, schemas and attitudes in order to treat depression. In IPT, the interpersonal

model of depression is central (Klerman et al. 1984). According to this model, major disturbances in

the interpersonal domain may cause and maintain depression. It is assumed that depressive symptoms

can be reduced through the improvement of interpersonal functioning.

4.2 Statistical analysis

The BDI-II network

First, we inferred the BDI-II network by analyzing the short-term dynamics between the 21 symptoms

across the 20 weeks of therapy with a modified version of the multilevel-Vector Autoregressive (VAR)

method (Bringmann, Vissers, et al., 2013)3. In the multilevel-VAR method, the time dynamics be-

tween the 21 symptoms of the BDI-II from one moment to the other are represented by a VAR model

(see also Tschacher et al. (2012) for a similar approach). In the VAR model, the dependent variable

3Note that we deviate in this paper slightly from the procedure as proposed by Bringmann, Vissers, et al. (2013). With
21 items, it is not computationally possible to include all 21 random e↵ects in the multilevel-VAR model simultaneously.
Instead, we included only 5 random e↵ects (including the autoregressive coe�cient and the intercept) at the same time
in a stepwise matter. Simulations indicated that the fixed e↵ects could still be estimated precisely with this number of
subjects and time points, which means that this is a feasible approach for estimating the current average network.
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(e.g., symptom sadness; item 1) at time point t (e.g., session 2) is regressed on the lagged t� 1 (e.g.,

session 1) versions of the independent variables (Box et al., 1994; Walls & Schafer, 2006)4.

The independent variables in this study are all the symptoms of the BDI-II, measured at the

previous time point (in this case the previous session). To account for di↵erences between patients,

all regression coe�cients were assumed to be normally distributed at the population level. As a

consequence, we obtained a multilevel model consisting of fixed (average) and random (individual)

e↵ects.5 Each BDI-II symptom was used as a criterion variable once, which means that 21 multilevel-

VAR models were estimated.

In order to estimate a multilevel-VAR model, data need to be stationary. An implication of this

assumption is that that the variables will fluctuate around the same mean over time (Lütkepohl, 2007).

Since the BDI-II symptoms decreased over the course of treatment (Lemmens et al., 2015), the means

changed significantly, which indicates a non-stationary process. For this reason, a linear trend in the

multilevel-VAR model was included, making the data trend stationary (Hamaker & Dolan, 2009).

This implies that the short-term dynamics or the session-to-session fluctuations of the symptoms (as

represented by the network) and the decrease of symptoms across the sessions (as represented by the

linear trend) are modeled separately. Therefore, change in the short-term dynamics is in principle

unrelated to change in the mean level of the BDI-II symptoms. Note further that stationarity also

implies the assumption that the e↵ects of symptoms on other symptoms are stable across time.

In order to obtain the BDI-II network, the estimated fixed e↵ects of the multilevel-VAR analyses

were used (Snijders & Bosker, 2012). Fixed e↵ects represent the average connection strengths of the

arrows in the network among the 21 symptoms and indicate whether the symptoms are positively or

negatively related to each other. The fixed e↵ects represent either autoregressive e↵ects (self-loops) or

cross-regressive e↵ects (connections between di↵erent variables) in the network. Note that the network

only represents the dynamic relations between the symptoms (the slopes of the multilevel-VAR model)

and not the mean scores (the intercepts of the multilevel-VAR model) of the symptoms.

The estimated fixed e↵ects or connections of the network resulted in a directed weighted network

structure of the BDI-II, which was visualized using qgraph (Epskamp et al., 2012), a package for the

statistical programming language R. Arrows or connections in the network represent more than mere

associations between symptoms: because symptoms are measured over time, the connections can be

viewed as an approximation of causality, resembling Granger-causality (Granger, 1969; Tschacher et

4Theoretically further lags are also possible. For example, a lag 2 model would indicate how symptoms are related
to all symptoms experienced two sessions and one session ago. However, model comparison indicated that lag 1 was a
more likely model than a lag 2 model (BIC lag 1: 71162, BIC lag 2: 71539).

5Simulations (not reported here) have indicated that because it is computationally not possible to include all 21
random e↵ects at once in the multilevel-VAR model, the variance components (random e↵ects variances) cannot be
estimated accurately enough. For this reason, they will not be discussed further in the paper. The random e↵ects should
not be left out of the model though, because their inclusion leads to a more precise estimate of the fixed e↵ects.
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al., 2012). The network analyses were based on all the connections of the network. However, for

reasons of clarity, we only visually present the strongest connections in the inferred network; that

is, those connections which surpass the significance threshold (5%) using the False Discovery Rate

(FDR) method (Benjamini & Hochberg, 1995). In the visually presented network, symptoms that are

more strongly related to each other tend to be closer together in the figure (this is a result of the node

placement algorithm, see: Fruchterman & Reingold, 1991).

Since the current study included two di↵erent therapy groups (CT and IPT), it is possible that two

di↵erent network structures give rise to the data. We tested this in two ways: First, we fitted a model

with the two networks separately and cross-correlated their estimated network links. Secondly, we

compared a model in which we included two networks with a model which had one common network;

for this purpose, we used the Bayesian Information Criterion (BIC; Schwarz et al., 1978). The model

with the lowest BIC is the preferred model.6

Centrality analysis

In the second analysis, the inferred network was further analyzed by estimating the centrality of the

BDI-II symptoms. In a centrality analysis, one can determine the relative importance or influence of

a symptom in the network. We performed three types of centrality analyses: outdegree, indegree and

betweenness centrality (see: Opsahl et al., 2010).7 Outdegree centrality indicates how many outgoing

arrows or how much information a symptom sends to other symptoms it is directly connected to. In

the same way, indegree centrality indicates how many incoming arrows a symptom receives from the

directly connected symptoms. Betweenness centrality takes into account both the direct and indirect

connections of a symptom. A symptom with a high betweenness centrality is a symptom located on

many paths between other symptoms and thus is a symptom through which the information in the

network has to pass often. Therefore, a symptom with a high betweenness centrality is important in

funneling the information flow or the symptom spread in the network.

Community structure analysis

As a third analysis, we performed a community structure analysis. In complex networks, new struc-

tures of clusters can often be found. An example of such a cluster is a community, in which groups of

symptoms are densely interconnected among each other, but sparsely connected to the overall network.

We used the Walktrap algorithm, which is suited for weighted networks (Pons & Latapy, 2005). This

algorithm does not take directions of the arrows into account, so we summed the connection strengths

6The BIC was calculated by taking the average of the BICs of the separate univariate models.
7Since we want to estimate the centrality between the symptoms, self-loops are not taken into account in the centrality

analyses. However, in all other analyses self-loops are taken into account.
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(arrows) between two symptoms to have an appropriate undirected network suitable for analysis. The

Walktrap algorithm uses random walks on the network to find communities or densely interconnected

symptoms. The algorithm reveals how many groups can be found and also to which group a symptom

of the network belongs to. All the analyses were done in the statistical software R.

4.3 Results

The BDI-II network

Figure 4.1 shows the inferred network of the dynamics between the 21 BDI-II symptoms. The analysis

of cross-correlations and the model fitting approach using the BIC indicated that the network structure

did not di↵er across the two therapy groups (r = 0.86, p < 0.0001; one network: BIC = 77367.65

versus two networks: BIC = 80574.09). Therefore, only one network was needed, representing both

treatment groups. From the figure, it is evident that the strongest connections between symptoms are

all positive in sign. Thus, when a symptom score increases, it is likely that other symptom scores also

increase the next session, leading to an increase in the severity of symptoms in general. For example,

if a participant reports feelings of guilt (‘guilty feelings’, item 5) in one session, that participant is

more likely to report feelings of failure about the past (‘past failure’, item 3) the next session. The

strength of the relation between symptoms translates into the thickness of the arrows in the figure:

the stronger the symptoms are related the thicker the arrow between two symptoms, and the closer

the symptoms tend to be together in the figure. This is expressed in, for example, the placement of

the symptoms ‘past failure’ (item 3) and ‘worthlessness’ (item 14).

Apart from the connections between the symptoms, self-loops can contain important information.

For example, the self-loop of the symptom ‘loss of interest in sex’ (item 21) is clearly the strongest

connection of the network, meaning that when a participant reports loss of interest in sex one session,

he or she is highly likely to report this in the next session as well. Furthermore, self-sustaining loops

are apparent in the network. For example, ‘worthlessness’ (item 14) and ‘guilty feelings’ (item 5) seem

to mutually influence each other. It should be mentioned that there are negative connections in the

complete network as well. However, since these are rather weak, they did not pass the threshold for

visualization in Figure 2.1. Note, however, that all connections are taken into account in the further

analyses.8 9

8We also confirmed that the connections in the network and thus the relationships between symptoms are not driven
by di↵erential variability. Standardizing the data per patient and per symptom led to a network that was highly similar
to the original network; the correlation between parameters in the original and standardized network was 0.99. As a
result, the conclusions of this paper are robust with respect to standardization of the data and are unlikely to reflect
di↵erential symptom variability.

9Proportional odds logistic regression (POLR), which is a regression model for ordinal response variables, also showed
highly similar results; the correlation between parameters in the original and POLR network was 0.96 and led to similar
centrality and community cluster results.
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Item legend of the BDI-II 
1.  Sadness 
2.  Pessimism 
3.  Past Failure 
4.  Loss of Pleasure 
5.  Guilty Feelings 
6.  Punishment Feelings 
7.  Self-Dislike 
8.  Self-Criticalness 
9.  Suicidal Thoughts 
10.  Crying 
11.  Agitation 
12.  Loss of Interest 
13.  Indecisiveness 
14.  Worthlessness 
15.  Loss of Energy 
16.  Changes in Sleeping 
17.  Irritability 
18.  Changes in Appetite 
19.  Concentration Difficulty 
20.  Tiredness 
21.  Loss of Interest in Sex 

Figure 4.1: The BDI-II network. In this network, the connections between the 21 symptoms that
surpass the significance threshold are visualized. Because of multiple hypothesis testing, we do not use
the traditional 0.05 cuto↵ for p-values as the standard (which would inflate the number of unimportant
links to be visualized); instead, we control the False Discovery Rate or FDR at 5% (Benjamini &
Hochberg, 1995). Here, the 75 connections that pass the FDR threshold are visualized.

Centrality analysis

Figure 4.2 presents the results of the centrality analysis. The left panel of the figure indicates that the

symptom ‘loss of pleasure’ (item 4) has one of the highest outdegrees, meaning that when one reports

loss of pleasure in one session, it is likely that one will also report an increase in other symptoms in

the next session. This is in contrast to, for instance, the symptom ‘changes in sleeping patterns’ (item

16), which is less likely to directly a↵ect other symptoms the next session.

The middle panel indicates that the symptoms ‘indecisiveness’ (item 13), ‘loss of interest’ (item

12), ‘past failure’ (item 3) and ‘sadness’ (item 1) feature higher indegrees and thus receive a lot of

information from other symptoms. This is in contrast to ‘suicidal thoughts’ (item 9): this symptom
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is unlikely to be influenced by other symptoms, and is more likely to influence other symptoms (see

also the first panel again).

The right panel indicates that the symptoms ‘loss of pleasure’ (item 4) and ‘past failure’ (item

3) feature the highest betweenness centralities, but they also have one of the highest outdegree (‘loss

of pleasure’) and indegree (‘past failure’) centrality scores, respectively. Thus, the symptoms ‘loss of

pleasure’ and ‘past failure’ are important in funneling the activation flow or symptom spread in the

network.
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Figure 4.2: Outdegree, Indegree and Betweenness centrality for all BDI-II symptoms. The black dots
are the model-based estimates of outdegree, indegree, and betweenness centrality. The higher the
centrality index score the more central the symptom is in the network.

Community structure of the BDI-II network

The community structure analysis using the Walktrap algorithm indicated a two-cluster solution (see

Figure 4.3).10 This community structure means that symptoms in one cluster are more densely

interconnected among themselves and more sparsely connected to symptoms in another cluster. The

10A hierarchical cluster analysis on the sum of the weighted links gave highly similar results.
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green cluster in Figure 3 consists of the symptoms ‘guilty feelings’ (item 5), ‘past failure’ (item 3),

‘self-dislike’ (item 7), ‘self-criticalness’ (item 8), ‘worthlessness’ (item 14), ‘punishment feelings’ (item

6) and ‘pessimism’ (item 2), which are often described as cognitive symptoms. Items in the yellow

cluster mainly consist of physical and a↵ective symptoms of depression that appear related to loss of

energy and pleasure.
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Figure 4.3: Community structure of the BDI-II network with the two clusters indicated in two di↵erent
colours.

4.4 Discussion

In this paper, we derived for the first time a network that represents the session-to-session dynamics of

one of the most widely used and empirically validated self-report measures for assessing the severity

of depression: the BDI-II (Beck, Steer, & Brown, 1996). Results indicate that, in this network,
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all BDI-II symptoms are directly or indirectly connected. In addition, the strongest connections

between the symptoms are uniformly positive, indicating that, in general, when a symptom changes

in severity, other symptoms tend to change in the same direction. This pattern of symptom dynamics

is independent of the overall decrease in symptom scores as this trend was modeled separately; hence,

the pattern does not reflect the common influence of treatment or recovery. In addition, for each

symptom-symptom relation, we controlled for the e↵ect of all other symptoms in the network. Thus,

the evidence from this study points to the conclusion that direct e↵ects among symptoms of the

BDI-II are prevalent, and in fact connect all symptoms assessed in the questionnaire. In other words,

symptoms of depression form a network of direct interactions.

Centrality analyses of the symptoms suggested that some symptoms are likely to have a larger

influence on the symptom spread than other symptoms. As one may expect based on, e.g., the

DSM-IV, the symptom ‘loss of pleasure’ (item 4) is one of the most central items in the symptom

network and thus has a relatively large e↵ect on the enduring of depressive symptoms in general.

Somewhat more surprisingly, the symptoms ‘sadness’ (item 1) and ‘loss of interest’ (item 12) have

a high indegree centrality, but quite a low outdegree and betweenness centrality, which means that

they tend to increase in severity as other symptoms become more severe, but do not play a large

role in funneling the symptom spread themselves. Thus, these symptoms may serve a mainly reactive

role in the short-term dynamics of depression. Additional studies are needed to confirm these results,

preferably engaging di↵erent depression questionnaires, such as the Hamilton Depression Rating Scale

(HDRS).

Based on theory, one may expect a di↵erence in symptom dynamics for subjects receiving CT

and IPT because both treatments are assumed to work through di↵erent mechanisms. We did not

observe such di↵erences. A potential explanation for our findings could be that the dynamics between

symptoms are similar when the treatments that are being compared are equally e↵ective in reducing

pathology, a fact that has been well established for CT and IPT for depression (e.g., Cuijpers, van

Straten, Andersson, & van Oppen, 2008; Hollon & Ponniah, 2010). Alternatively, it might be the

case that di↵erences between CT and IPT actually do exist, but that we did not capture them in the

current study because the BDI-II is, due to its design, insensitive for the di↵erences between the two

treatments. For example, even though the BDI-II includes items on several cognitive components (key

elements of CT), items referring to problems in the interpersonal domain (core of IPT) are lacking.

Further research involving other questionnaires is necessary to indicate if there are di↵erences in

symptom dynamics between therapies. A final possibility is that the di↵erence between CT and IPT

does not lie in symptom-symptom interaction, as studied in this paper, but in di↵erences that arise in,

e.g., stepwise changes in symptomatology. In this case, therapy e↵ects might be detected in the way

symptoms decrease or increase from one time point to another. Models that may be used to analyze
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such di↵erences, while accounting for the network of symptom-symptom interaction, are currently

unavailable; however, non-linear statistical network inference techniques that may be used to model

such processes are within reach, and could be used to investigate this issue in the future.

In the present study, community analyses revealed two groups of symptoms. The result appears

to accommodate emerging evidence from the biomedical literature, which points to two types of

depression: melancholia and atypical depression (Lamers et al., 2010, 2012). The current community

clusters resemble these di↵erent depression types, as the green cluster in Figure 3 has similarities to

melancholic type, whereas the yellow cluster resembles atypical depression. It is also interesting to

note that the community structure result, based on multiple time points, is similar to the two-factor

solution of the BDI-II, based on pooling across subjects at one time point (as found in e.g., Beck,

Steer, & Brown, 1996; see also Arnau, Meagher, Norris, & Bramson, 2001; Steer, Ball, Ranieri, &

Beck, 1999). Except for ‘suicidal thoughts’, all other symptoms in the green cluster of Figure 4.3 are

the same as in the cognitive dimension of the two-factor solution of the BDI-II, whereas the yellow

cluster could be interpreted as the somatic-a↵ective or non-cognitive dimension. Although it is a good

sign that the results we find are consistent with what one typically finds using factor analysis, our

approach leads to a di↵erent way of thinking, di↵erent strategies for intervention, and to very di↵erent

conclusions. In the latent variable approach, there are just two clusters of symptoms, which is a static

result. In the network view, the result concerns the communication between symptoms that is denser

within the cluster than with symptoms that are not in the cluster, leading to new hypotheses on

how interventions should be operationalized, namely focusing on the interaction between symptoms.

Thus, the existence of such patterns of influence is not a replication of the results of factor analysis

on individual di↵erences; rather, it may be seen as a potential explanation for these results (Wichers,

2014).

Several findings of this paper suggest further research. One important issue is how our results,

which only involved participants with a diagnosis of depression, compare to results from una↵ected

individuals. For example, it is important to investigate whether a similar network characterizes healthy

individuals. One hypothesis would be that there are no distinct symptom clusters in healthy subjects,

but that instead all symptoms are similarly (and weakly) connected. Such a network would be more

resilient, since activation would not spread as easily, and it would be less likely to get stuck in a cluster

of symptoms. Another important topic for future research involves the di�cult question of how to

relate di↵erent time scales (Boker, Molenaar, & Nesselroade, 2009). This is because the symptoms

that characterize depression are likely to influence each other in di↵erent time windows. For example,

sleep problems are likely to exert e↵ects in a pattern of a day-to-day variation, whereas mood states

are much quicker and may a↵ect each other within minutes. The question of how the dynamics of

these di↵erent time scales interact with each other is, in our view, one of the main puzzles to be solved
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in the study of symptom dynamics.

Regarding clinical practice, the relevance of the methodology and results of our approach may lie

in opportunities to determine symptom centrality. For example, network analyses may be used to

indicate which symptoms should be targeted first, and in this sense may help in setting up treatment

strategies. Ideally, such analyses should be based on person-specific analyses (cf. Molenaar & Camp-

bell, 2009). Unfortunately, at the moment such analyses are not computationally feasible for large

networks of 21 symptoms. However, future development of the multilevel-VAR method, combined

with a higher frequency of within subject assessment, should make it possible to take this procedure

a step further, which may eventually lead to person-specific therapeutic interventions. Information

about person-specific network centrality would not necessarily require pre-treatment assessment, and

the high frequency assessment could be informative at any point, even if started during therapy. For

example, if a centrality analysis of an individual network reveals that for that specific person ‘loss

of pleasure’ is the most central symptom, therapy that intervenes on this symptom would be more

e↵ective than treatment that intervenes on non-central symptoms; for other persons, di↵erent inter-

ventions may be preferable. In a similar vein, one could hypothesize that if ‘suicidal thoughts’ is the

most central symptom for a given person, this may signal acute need for care. Furthermore, since

suicidal thoughts has a high outdegree, and is thus likely to trigger other symptoms, but a low inde-

gree, and is thus not likely to be influenced by the other symptoms, interventions should be directly

targeted at this symptom. Given the increased opportunities for assessing highly intensive time series

within individuals, person-specific treatment protocols based on networks of symptom dynamics are

rapidly becoming a realistic possibility. Thus, the network perspective is a promising new research

field, which can give guidance to research on depression and to psychological research in general.
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5 Changing dynamics: Time-varying autoregressive

models using generalized additive modeling

Humans are complex dynamic systems, whose emotions, cognitions, and behaviors fluctuate constantly

over time (Nesselroade & Ram, 2004; L. P. Wang, Hamaker, & Bergeman, 2012). In order to study

these within-person processes, and to determine how, why, and when individuals change over time,

individuals need to be measured on a relatively large number of occasions (Bolger & Laurenceau, 2013;

Ferrer & Nesselroade, 2003; Molenaar & Campbell, 2009; Nesselroade & Ram, 2004; Nesselroade &

Molenaar, 2010), resulting in intensive longitudinal data that, if N = 1, are typically designated as

time series (Walls & Schafer, 2006). Currently, a spectacular growth of studies gathering intensive

longitudinal data is taking place (aan het Rot et al., 2012; Bolger et al., 2003; Mehl & Conner, 2012;

Scollon, Prieto, & Diener, 2003). With this development, it has become possible to study dynamical

processes of psychological phenomena in much greater detail than has hitherto been possible (Trull &

Ebner-Priemer, 2013).

There are various aspects of within-person processes that one can choose to study in order to gather

insights into psychological dynamics, of which temporal dependence is one particularly informative

aspect (Boker et al., 2009; McArdle, 2009). Temporal dependence concerns the degree to which

current observations can be predicted by previous observations, for example, the degree to which an

individual’s emotional state at a given time point is predictive of her emotional state at subsequent

time points (Jahng et al., 2008; Kuppens, Allen, & Sheeber, 2010).

A popular approach to handling such temporal dependency is autoregressive (AR) modeling, a

family of statistical models in which the structure of the time-dependency in the data is explicitly

modeled through regression equations. Some autoregressive models are suited to study time de-

pendence within a single individual (e.g., Hertzog & Nesselroade, 2003; Molenaar, 1985; Rosmalen,

Wenting, Roest, de Jonge, & Bos, 2012; Stroe-Kunold et al., 2012), whereas multilevel techniques

can model time dependence within multiple individuals simultaneously (e.g., Bringmann, Vissers, et

al., 2013; de Haan-Rietdijk et al., 2014; Song & Ferrer, 2012; Oravecz et al., 2011). In addition, AR

techniques can be applied in various frameworks, such as the Bayesian (e.g., Pole et al., 1994) and the

structural equation modeling framework (SEM; e.g., Hamaker et al., 2003; McArdle, 2009; Voelkle et
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al., 2012).

A drawback of most AR models is that they are based on the assumption that the average value

around which the process is fluctuating as well as the variance and the temporal dependency of

the process are time-invariant. This is also known as the stationarity assumption (Chatfield, 2003).

However, in the context of psychology this may not always be a realistic assumption. In fact, it could

be argued that in many psychological time series studies a form of non-stationarity can be expected

to be present (e.g., Bringmann et al., 2015; Molenaar, De Gooijer, & Schmitz, 1992; Rosmalen et al.,

2012; Tschacher & Ramseyer, 2009). Even more so, often the very reason why it is interesting and

important to study dynamics of psychological processes lies in their non-stationary nature (Boker,

Rotondo, Xu, & King, 2002; van de Leemput et al., 2014). For example, when an individual receives

therapy, the aim is to accomplish change, such as a decrease in symptoms. Thus, instead of considering

dynamics, such as temporal dependency, as static characteristics of an individual, it is more realistic

to consider them as time-varying, which implies that standard AR models are unsuitable (Molenaar

et al., 1992; Boker et al., 2002).

To overcome this limitation, time-varying AR (TV-AR) models have been developed (Dahlhaus,

1997). In these models, the parameters (the intercept and autoregressive parameter) of the AR model

(most commonly an AR(1) model) are now allowed to vary over time, so the models can be applied to

both stationary and non-stationary processes (Chow, Zu, Shifren, & Zhang, 2011). Most time-varying

AR models used in psychology and econometrics are based on the state-space modeling framework

(Chow et al., 2011; Koop, 2012; Molenaar, 1987; Molenaar & Newell, 2003; Molenaar, Sinclair, Rovine,

Ram, & Corneal, 2009; Mumtaz & Surico, 2009; Prado, 2010; Tarvainen, Hiltunen, Ranta-aho, &

Karjalainen, 2004; Tarvainen, Georgiadis, Ranta-aho, & Karjalainen, 2006; West, Prado, & Krystal,

1999). The state-space framework is very general and encompasses a wide variety of models, such as

dynamic linear models. Hence, the framework is very powerful due to its generality, but the downside

is that it requires learning (state-space) notation with which most psychologists are unfamiliar. In

addition, state-space models require the user to specify the way parameters of the time-varying model

vary over time (Belsley & Kuh, 1973; Tarvainen et al., 2004; for a notable exception see Molenaar et

al., 2009), but in practice the required theories about the nature of the change are often lacking (Tan,

Shiyko, Li, Li, & Dierker, 2012), or must be handled via explicit incorporation of spline-based or other

nonparametric functions into a (confirmatory) state-space framework (Tarvainen et al., 2006). Doing

so may entail high computational demands when the dimension of the unknown change forms to be

explored is high. Thus, there is a clear need for a time-varying AR method that functions without

pre-specification and moreover is easy to apply for researchers in psychology.

As we will show in this paper, one solution is to implement TV-AR models based on semi-

parametric statistical modeling using a well-studied elegant and easily applicable generalized addi-
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tive modeling (GAM) framework (Hastie & Tibshirani, 1990; McKeown & Sneddon, 2014; Sullivan,

Shadish, & Steiner, 2015; Wood, 2006). The crucial advantage of semi-parametric TV-AR models

in general is that they are data-driven, and thus the shape of change need not be specified before-

hand (Dahlhaus, 1997; Fan & Yao, 2003; Giraitis, Kapetanios, & Yates, 2014; Härdle, Lütkepohl, &

Chen, 1997; Kitagawa & Gersch, 1985). Furthermore, no state-space notation is needed, since the

TV-AR model is closely related to and can be specified and estimated within the familiar regression

framework. Software for applying the GAM framework is freely available in the mgcv package for

the statistical software R (Wood, 2006). The package has well-functioning default settings, making

it very user friendly.1 By showing how the TV-AR model can be applied with existing and easy to

use software, we hope to make the TV-AR method accessible for a broad audience of psychological

researchers.

The structure of the paper is as follows. In the first section, a detailed explanation of the standard

time-invariant AR is given. In the second section, we describe the general structure of the TV-AR

model, and in the third section we explain in detail how the time-varying parameters are estimated,

and also introduce the mgcv package in R, with which the TV-AR is estimated (McKeown & Sneddon,

2014; Wood, 2006). In the fourth section, we provide a simulation study and give guidelines on how to

use the TV-AR model with the mgcv package. In the fifth section, we give an example from emotion

dynamics research to illustrate the TV-AR method by applying it to two di↵erent subjects whose

a↵ect was measured over circa 500 days in the context of an isolation study, the MARS500 project

(Basner et al., 2013; Ta↵orin, 2013; Vigo et al., 2013; Y. Wang et al., 2014). This section is followed by

concluding remarks and the Appendix with a description of details of the simulation study. Additional

details of the simulation study can be found in the R-code online.

5.1 Standard time-invariant AR

In this section, the standard time-invariant autoregressive (AR) model is explained in more detail.

Code for the equations and figures in this section can be found in the R-code.

Time series data consist of repeated measurements on one or more variable(s) taken from the

same system (e.g., an individual, dyad, family, or organization). Typically, such data are statistically

dependent, since all measures are taken from the same participant (e.g., answers on a questionnaire

are likely to be related over time, Brandt & Williams, 2007; Velicer & Fava, 2003). This statistical

dependence or autocorrelation that occurs in repeated measurement data is a central aspect that has

1Note that a time-varying e↵ect model that also allows fitting a semi-parametric TV-AR model has recently been
developed in SAS (Tan et al., 2012). However, it is less general and has fewer options for fitting a TV-AR model (e.g.,
at the moment it is only suitable for normally distributed time-varying models).
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to be accounted for when studying the underlying process. Furthermore, when this autocorrelation is

not taken into account invalid estimates can occur.

In psychology, the standard model used to deal with this statistical dependency is a Gaussian

discrete time AR model.2 An AR model accounts for the statistical dependency by modeling it

explicitly, or in other words, the time series is regressed on itself (Hamaker & Dolan, 2009). The most

basic form is an AR model of lag order 1 or AR(1):

y
t

= �0 + �1yt�1 + "
t

. (5.1)

This amounts to a linear regression model with an intercept �0, and the autoregressive coe�cient �1,

representing the degree and direction of the relation between a measurement at a previous (lagged)

time point (t� 1) and current time point (t) of a single variable y (Velicer & Fava, 2003) and can be

estimated with ordinary least squares (OLS). The part of observation y
t

that cannot be explained by

the previous observation y
t�1 is referred to as the innovation "

t

(Chatfield, 2003). Other terms for

the innovation are random shock, perturbation, or dynamic error.3 The innovations are assumed to

be normally distributed with a mean of zero and variance �2
"

(J. D. Hamilton, 1994).

The autoregressive coe�cient �1 can also be interpreted as the extent to which a current obser-

vation is predictable by the preceding observation (Hamaker & Dolan, 2009). A positive relationship

indicates that high values of a variable (e.g., Positive A↵ect; PA) at one time point are likely to be

followed by high values in the next time period (see left panel of Figure 5.1). In contrast, a negative

relationship would predict the opposite, namely low values of the variable during the next time period

(Chatfield, 2003; Velicer & Fava, 2003), which typically results in a jigsaw pattern (see right panel of

Figure 5.1).

An important assumption for an AR(1) model is stationarity. A distinction is made between strictly

stationary and covariance-stationary (also known as weakly or second-order stationary) processes. If

a process is strictly stationary, the distribution of y
t

and all joint distributions of y random variables

are the same at all time points, and are thus time-invariant. Covariance-stationarity is a less strong

assumption, as in this case only the first two moments of a distribution, the mean and the variance,

and thus the parameters �0 and �1, have to be time-invariant.4 Furthermore, stationarity also requires

2In discrete time AR models the measurements of the process are assumed to be equally spaced, meaning that the
distance between the measurements is the same through the whole study. If time points were not equally spaced, the
autoregressive coe�cient would have a di↵erent meaning across occasions. This is in contrast to continuous time AR
models, where the intervals between time points do not have to be equal (see for more information: Bisconti, Bergeman,
& Boker, 2004; Deboeck, 2013; Oravecz et al., 2011; Voelkle & Oud, 2013; Voelkle et al., 2012).

3The term dynamic error is used to pit this error against the well-known measurement error. The di↵erence between
the two error terms is that while measurement error is occasion-specific, a↵ecting the scores only at a single occasion,
dynamic error tends to a↵ect subsequent occasions as well due to the underlying temporal dependency in the process
(Schuurman, Houtveen, & Hamaker, 2015). In the current study we restrict our focus to processes without measurement
error.

4As we study normally distributed processes here, it is interesting to note that in this case covariance-stationarity
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that the autoregressive coe�cient must lie between �1 and 1 (boundaries not included). In this case,

the mean µ and variance �2 of the process in Equation 5.1 can be expressed as

µ =
�0

1� �1
(5.2)

�2 =
�2
"

1� �2
1

, (5.3)

showing that both are time-invariant (Chatfield, 2003; J. D. Hamilton, 1994).

Figure 5.1 shows two examples of a stationary process. Although the process fluctuates (changes)

in both the left and right panel, the intercept, mean, autocorrelation and variance do not change over

time. In an AR model, the intercept term �0 only has a substantial interpretation if a score of 0 is a

possible value in the sample.5 Therefore, we prefer to work with the mean µ, which can be interpreted

as the value around which the process fluctuates.

5.2 Time-varying AR

Psychological data are often non-stationary, rendering a standard AR model inapplicable. In this

section, we will therefore describe an alternative model, the TV-AR model, which can model non-

stationarity. First, we will discuss non-stationarity, illustrated by two simulated examples with 150

time points (representing here the evolution of valence within an individual). Secondly, we will give a

general overview of the TV-AR model. Information on statistical inference for the TV-AR model will

be given in the next section. The code to make the figure in this section can be found in the R-code.

There are several sources that can give rise to a non-stationary process in which the intercept,

mean, autocorrelation and (or) variance change over time. In psychological research, the focus has

mainly been on detecting a type of non-stationarity that is due to a (gradual) change in the mean

of a process, which is visible as a trend in the data. Consider for example the left panel of Figure

5.2, in which a simulated process of hypothetical valence scores for an individual is shown. Here the

autoregressive parameter does not change over time (�1 = 0.2), but the intercept does, as represented

by the dashed line, and therefore the mean also changes. Thus, a trend in the data is present.

To deal with a trend, common approaches in psychology have been detrending and modeling the

trend. In the first method, data are made stationary by subtracting the values of a fitted trend from

the individual data-points, thus removing the trend from the data (Hamaker & Dolan, 2009). A

implies strict stationarity, since a normal distribution is completely defined by its first two moments (Chatfield, 2003,
p. 36).

5The intercept �0 is the expected score when the observation at the previous occasion was zero (i.e., yt�1 = 0).
When the scale that is used does not include the score zero, the intercept is typically not interesting.
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Figure 5.1: Simulated time series with a positive (left) and a negative (right) autocorrelation for a
valence process of a single individual. The valence process ranged from 0 to 10, with 0 indicating feeling
very unhappy and 10 indicating very happy. The process was simulated for 150 time points with an
intercept (�0) of 3 (left) and 6 (right; see dashed line in both graphs) and an autoregressive coe�cient
(�1) of 0.5 (left) and -0.5 (right), meaning that there was a positive (left) or negative (right) dependency
in the data. Notice that here the intercept as such has no further meaning and is di↵erent from the
mean. In the left graph, the mean (µ; shown by the solid black line) is 3/(1�0.5) = 6, indicating that
on average this individual felt quite happy. In the right graph, the mean is 6/(1+0.5) = 4, indicating
that on average this individual felt slightly unhappy.

drawback associated with this way of dealing with non-stationarity is that it may remove important

information from the data (Molenaar et al., 1992). In the second approach, stationarity is obtained

through modeling the trend with, for example, linear growth curve modeling (Tschacher & Ramseyer,

2009). Both modeling the trend as well as detrending require specifying the functional form of the

trend, which can be di�cult, especially when convenient parametric forms are not applicable (Adolph,

Robinson, Young, & Gill-Alvarez, 2008; Faraway, 2006; Tan et al., 2012). The TV-AR model that

we will present has the advantage that it can detect trends in a data-driven way, and thus no pre-

specifications are needed to account for a trend in the data.

Detrending or modeling the trend makes the process trend-stationary. However, when detrending,

often only the trend due to a changing intercept is removed, and what is overlooked is that non-

stationarity and trends can also occur due to changes in the autocorrelation.6 For example, Figure

5.2 (right panel) shows a process that is non-stationary due to a change in the autocorrelation. The

autoregressive function changes linearly over time, from a high value (�1 = 0.65) to a lower one

(�1 = 0.2). At first, the data are characterized by a high autocorrelation, which disappears towards

6Note that a trend can be also caused by a unit root process, such as a random walk. In this case, the process has
to be di↵erenced in order to become stationary (see, for example, J. D. Hamilton, 1994).
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5.2. Time-varying AR

the end of the time series. This is evident in the figure: First there are large oscillations (a signature of

a high autocorrelation), which then become smaller towards the end of the time series (indicating low

autocorrelation). Removing or modeling a trend as described above will not deal with this source of

non-stationarity, leaving the process covertly non-stationary. This is an important reason why TV-AR

models, which can detect and model both changes in the intercept and autocorrelation simultaneously,

are important.

Another reason why TV-AR models are useful is that they can test for non-stationarity. There are

several tests to check for stationarity, such as the Dickey Fuller test (which can be used to test whether

a unit root is present in the time series; Dickey & Fuller, 1979), and the KPSS test (which can be

used to test whether the mean is stable over time, or whether it follows a linear trend; Kwiatkowski

et al., 1992). However, there is no specific test that checks for non-stationarity due to changing

autoregression or a changing mean that follows a di↵erent trajectory than a linear trend. With the

TV-AR model, we present a method that can test the time invariance of the autoregressive parameter,

and simultaneously check whether a trend is due to a time-varying intercept and/or a time-varying

autoregressive parameter (see Figure 5.2). Moreover, this method allows for instantly modeling such

non-stationarity.

The defining feature of a TV-AR model is that the coe�cients of the model are allowed to vary

over time, following an unspecified function of time (Dahlhaus, 1997; Giraitis et al., 2014). To this

end, we specify

y
t

= �0,t + �1,tyt�1 + "
t

(5.4)

where the intercept �0,t and the autoregressive �1,t coe�cients are now functions that can change over

time.7 The innovations still form a white noise process so that the values of "
t

are independently and

identically distributed, which implies that their variance is constant over time.

An important assumption of the TV-AR model is that, even though the functional form of �0,t

and �1,t can be any function, change in the parameter values is restricted to be gradual, that is, there

should be no sudden transitions. This assumption implies that the TV-AR model, as defined here,

is not appropriate for time series with abrupt changes or sudden jumps. Thus, researchers should

decide whether or not continuous change in parameters is plausible on the basis of the substantive

knowledge of the problem at hand. If sudden, qualitative transitions are expected (e.g., as would be

the case in some areas of cognitive development or in mental disorders with a sudden onset) then the

current methodology would not be advisable. However, if the point at which an abrupt change takes

place is known, one can model the change with a TV-AR model. One could specify, for example, a

TV-AR model before and after an intervention. Additionally, although a TV-AR model is designed

7Note that in Giraitis et al. (2014) �1,t is specified as �1,t�1. Here we use the standard notation used in Dahlhaus
(1997).
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5. Time-varying autoregressive models using GAM

for handling non-stationary processes, the process is still required to be locally stationary, meaning

that �1 < �1,t < 1, for all t (Dahlhaus, 1997).

Assuming that the change is restricted to be gradual and the process is locally stationary, the

model implied mean is (Giraitis et al., 2014):8

µ
t

⇡ �0,t
1� �1,t

. (5.6)

Similarly, due to the fact that the autoregressive coe�cient is allowed to vary over time, the variance

of the time series is now also time-varying, that is,

�2
t

⇡ �2
"

1� �2
1,t

. (5.7)

Note that since µ
t

can vary over time, in the literature µ
t

is often interpreted as the attractor (also

known as baseline or equilibrium) rather than the mean of the process (Giraitis et al., 2014; Hamaker,

2012; Oravecz et al., 2011). As is the case in a time-invariant AR model, the intercept and the

changing mean (attractor or trend) are distinct features of a process. The intercept typically does

not have a direct psychological interpretation, whereas the attractor represents the underlying trend

in the time series (see Figure 5.2).

5.3 Inference of the TV-AR model: Splines and generalized

additive models

In this section, we discuss how to estimate the time-varying parameters in the TV-AR model using

the generalized additive model (GAM) framework. GAM models are expanded general linear models

(GLMs), such that one or more terms are replaced with a non-parametric (smooth) function (Keele,

2008; Wood, 2006). This makes GAM models semi-parametric models, since predictor variables (i.e.,

in our case y
t�1) can either be modeled as in standard regression (e.g., �1) or in a non-parametric way

(e.g., �1,t). We focus in this section on the nonparametric representation. Code for the figures can be

8To derive a model-implied mean of the TV-AR, we can write

µt = E
⇥
�0,t + �1,tyt�1 + "t

⇤

= E[�0,t] + E[�1,tyt�1] + E["t]

= �0,t + �1,tµt�1

⇡ �0,t + �1,tµt

(5.5)

where the latter approximation results from the fact that, in contrast to a standard AR model where we have
E[yt] = E[yt�1] = µ, the expectations of yt and yt�1 are not exactly equal for a TV-AR model. However, since the
parameters �0,t and �1,t are only allowed to change gradually, we can assume that µt�1 is reasonably well approximated
by µt, so that we have Equation 5.6. The derivation of the time-varying variance is similar to the derivation of the
time-varying mean.
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Figure 5.2: Simulated data of a valence process (with 0 indicating feeling very unhappy and 10 indi-
cating very happy) with time-varying parameters. In the left panel, the autoregressive coe�cient is
time-invariant (�1 = 0.2), while the intercept is time-varying (�0,t; ranging from 3 to 5); in the right
panel, the autoregressive coe�cient is time-varying (�1,t; gradually changing from 0.65 to 0.2), while
the intercept is time-invariant (�0 = 2). The attractor in the left panel (µ

t

; shown by the solid black
line) changes from 4 to 7, indicating that this individual felt a bit unhappy at first, but at the end
of the time series felt happy, whereas the attractor in the right panel changes from circa 6 to 2.5,
indicating that this individual felt happy at first, but at the end felt unhappy.

found in the R-code.

The non-parametric smooth functions used here are based on regression splines. Regression splines

are piecewise polynomial functions that are joined (smoothly) at breakpoints called knots (Hastie &

Tibshirani, 1990). In order to clarify the concept further, we will give a simulated example (based

on Wood, 2006). Specifically, data are simulated for n = 20 time points according to a sine wave:

y
t

= sin
�
2⇡t
20

�
+ ✏

t

, where ✏
t

⇠ N(0, 0.32). We denote the time points in the data as t
i

with i = 1, ...20.

The data are represented as the small black dots in the first and last panel of Figure 5.3. To fit these

data, we start with a simplified TV-AR model

y
t

= �0,t + "
t

(5.8)

with only a time-varying intercept and no autoregressive parameter.

The goal is to find the function �0,t that tracks the general relation between y and t (which for

this example is the sine wave underlying the data) as well as possible. In order to find the optimal
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5. Time-varying autoregressive models using GAM

smooth function estimating �0,t, the following penalized least squares loss function is minimized:

nX

i=1

[y
i

� �0,ti ]
2 + �

Z +1

�1
[�00

0,t]
2dt. (5.9)

In the first part of Equation 5.9 one can recognize the ordinary least squares minimization
P

n

i=1[yi �

�0,ti ]
2, which measures the distance between the function and data points. The last part is the rough-

ness penalty �
R +1
�1 [�00

0,t]
2dt. This is an integrated squared second derivative that defines wiggliness,

since the second derivative is a measure of curvature of the function whereas the integral sums up

this measure along the entire domain of the function (Keele, 2008). Note that the square is needed

to treat negative and positive curvature identically. The � is a tuning parameter that controls the

smoothness of the function. Small values of � practically eliminate the penalty, thereby not penalizing

for wiggliness and opening the possibility for wiggly functions. Large values of � give a lot of weight

to the penalty, thereby penalizing for wiggliness and restricting the possibility for wiggly functions.

Minimizing the whole function leads to an optimal trade-o↵ between goodness of fit and smoothness.9

The solution to the problem in Equation 5.9, denoted �̂0,t, can be expressed as a finite weighted

sum of a set of predefined functions, known as basis functions. This can be written as follows:

�̂0,t = ↵̂1R1(t) + ↵̂2R2(t) + ↵̂3R3(t) + · · ·+ ↵̂
K

R
K

(t), (5.10)

where we have expressed the solution in terms of K basis functions R1(t), . . . , RK

(t) and t represents

the predictor variable (time, in our case). The basis functions can be evaluated at every time t
i

in the

data and therefore the values R1(ti), . . . , RK

(t
i

) can be collected in a n⇥K design matrix X so that

the optimal regression weights can be determined by linear regression methods (see below).

Various options exist for choosing the smoothing basis, that is, the set of basis functions R1 to

R
K

. Commonly used smoothing bases are cubic regression splines and thin plate regression splines

(the latter being the default setting in the package mgcv), which represent alternative strategies with

di↵erent properties of how the basis functions are chosen (Wood, 2006). Cubic regression splines are

segmented cubic polynomials joined at the knots, and are constrained to be continuous at the knot

points as well as to have a continuous first and second derivative (Fitzmaurice, Davidian, Verbeke, &

Molenberghs, 2008). With cubic regression splines the locations of knots have to be chosen, the default

setting in the mgcv package being that the knot points are automatically placed (equally spaced) over

the entire range of data.

In contrast, the thin plate regression splines approach automatically starts with one knot per

observation and then uses an eigen-decomposition to find the basis coe�cients that maximally account

9Note that the least squares criterion can be used here because we assume continuous normally distributed data. In
the more general case, the least squares criterion is replaced by minus the likelihood.
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for the variances in the data. Thus, thin plate regression splines circumvent the choice of knot

locations, reducing subjectivity brought into the model fit (Wood, 2006). Furthermore, unlike cubic

regression splines, thin plate regression splines can handle smoothing in high-dimensional problems

(e.g., when multiple independent variables occur). However, in one-dimensional problems, such as the

one considered here, cubic and thin plate regression splines will lead to very similar solutions.

For our example, we have chosen a thin plate regression spline smoothing basis with K = 6 basis

functions. The six basis functions are plotted in the panels 2-7 of Figure 5.3. The first two basis

function are defined as R1(t) = 1 and R2(t) = t. Here one can recognize the constant and the first

predictor variable of a standard linear regression model. The other four basis functions (R3 - R6) have

a more complicated shape (for examples of such functions, see Gu, 2002; Keele, 2008; Wood, 2006).

Additionally, in thin plate regression every basis function that is added is wigglier than the previous

basis function. For example, basis function R6 is wigglier than R5. Note that in contrast to cubic

splines, where the basis functions depend on the knot location, in thin plate splines a basis function

cannot be associated with a knot location. Furthermore, the basis functions are evaluated at every

value of t (also with the cubic spline smoothing basis). This is important to point out, as regression

splines are defined as segmented polynomials that are joined at the knot points, so evaluations of the

basis functions may prima facie seem to be restricted to particular segments.

After choosing the smoothing basis and the number of basis functions, estimating the time-varying

function �0,t simply boils down to the estimation of the weights (denoted as ↵
i

above) of the linear

combination in a penalized regression sense (see below). In Figure 5.3, the final panel shows the

weighted basis functions as well as the sine wave that is the final smooth function (i.e., �̂0,t, the thick

dashed line).

Using a regression spline based method to estimate a smooth function raises the question of how

many basis functions are needed to get a good fit. The usual approach is to place more basis functions

than can reasonably be expected to be necessary, after which the function’s smoothness is controlled

by the roughness or wiggliness penalty as described earlier (�
R +1
�1 [�00

0,t]
2dt; see Wood, 2006). An

attractive feature of spline regression methods is that the penalized loss function eventually boils

down to a relatively simple penalized regression problem (see Wood, 2006). Thus, one can choose

a reasonably large number of basis functions (so that in principle even very wiggly functions can be

handled by the model), but then too wiggly components of the basis functions that are unnecessary are

downplayed based on the value of the penalization tuning parameter �. For instance, in our example

the wiggliest basis function R6 (panel 7 in Figure 5.3) is clearly penalized, as it appears as an almost

flat horizontal line in the last panel of Figure 5.3.

Of course, the next question is then: What is a good value for the penalty parameter �? If

the value of � is too small, the estimated function is not smooth enough, but if � is set too high,
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Figure 5.3: The six basis functions for the curve �0,t using a cubic regression spline basis. Just as in
standard regression, all basis functions R

i

(t) are weighed by multiplying them with their corresponding
↵
i

coe�cients. The contribution of each basis function to the solution is estimated using penalized
regression and the �̂0,t (the thick black dashed line in the bottom right panel) is a weighted sum.

the function may oversmooth the data. Commonly, the optimal value of � is determined using the

generalized cross validation method (GCV; Golub, Heath, & Wahba, 1979). The idea of (ordinary)

cross validation is that first a model, in this case a regression spline with a certain value of �, is fitted

on part of the data, for example leaving one datum out. In a second step, it is measured how well

the estimated model can predict the other part of the data, for example the datum that was left out.

However, with splines this process is computationally intensive and sensitive to transformations of the

data (Wood, 2006). Therefore, the generalized cross validation score is used instead, which follows

the same principle, but is invariant to transformations (Keele, 2008). The lowest GCV score indicates

the optimal � value and thus optimal smoothness of the estimated smooth function.

All of the above steps are implemented in the mgcv package in R (Wood, 2006). Using this

software, one only has to define su�ciently many basis functions. The default for all splines is 10

basis functions. For the current example, detecting the relation between y and t, the command in R

would be gam(y~s(t,bs=‘tp’,k=6)), where the function s indicates the use of a smooth function for

its argument (the predictor t in this case), bs indicates which smoothing basis is used (thin plate in

this case), and k indicates the number of basis functions (see also the R-code). In addition to the GCV

90



5.3. Inference of the TV-AR model: Splines and generalized additive models

score and the estimated smooth function, the mgcv package also provides 1) p-values, 2) a measure of

nonlinearity (edf and ref.df), 3) 95% confidence intervals (CIs) and 4) model fit indices, all of which

we elaborate on below.

1. The p-values for the smooth function result from a test of the null hypothesis that the smooth

time-varying function is actually zero over the whole time range (Wood, 2013).

2. As non-parametric smooth functions (such as �0,t) are di�cult to represent in a formulaic way,

a graphical representation is usually needed to get insight into the form of the function (see for

instance Figure 5.3; Faraway, 2006). However, besides a plot of the smooth function, the mgcv

package also provides a measure of nonlinearity in the form of the e↵ective degrees of freedom

(edf). Basically, the edf refers to the number of parameters needed to represent the smooth

functions. At first sight, one may think that this is equal to the number of basis functions, but

because of the penalization that is not the case. The reason why the penalization decreases

the e↵ective degrees of freedom is that the parameters are not free to vary because of the

penalizations (Wood, 2006). The higher the edf, the more wiggly the estimated smooth function

is, and an edf of 1 indicates a linear e↵ect (Shadish, Zuur, & Sullivan, 2014). Furthermore,

the edf also gives an indication of how much penalization took place and thus may serve as a

diagnostic: The closer the edf is to the number of basis functions, the lower the penalization.

Usually, an edf close to the number of basis functions means that additional basis functions

should be added to capture the shape of the function. The ref.df is the reference degree of

freedom used for hypothesis testing (Wood, 2013).

3. The 95% confidence intervals (CIs) around the smooth curve reflect the uncertainty of the

smooth function. As the confidence intervals are obtained through a Bayesian approach, they

are strictly speaking credible intervals, or Bayesian confidence intervals as referred to by Wood

(see Wood, 2006).

4. Finally, model selection criteria can be retrieved with the package (such as BIC and AIC), where

the lowest fit indices indicate the best model fit. When using the BIC and AIC for penalized

models, note that the degrees of freedom are determined by the edf number and not by the

number of parameters (see for more information Hastie & Tibshirani, 1990).

We have assumed a simple model with only a time-varying intercept to explain the fundamentals

of splines. For the more realistic general TV-AR model, the time-varying autoregressive function is

estimated in a similar way (see for further information Wood, 2006).
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5. Time-varying autoregressive models using GAM

5.4 Guidelines regarding the TV-AR model: a simulation study

To evaluate how the TV-AR model performs under di↵erent circumstances using the default set-

tings, we carried out a simulation study. In addition, we investigated the robustness of our method

against violations of the assumption of gradual change, by considering also functions that change

non-gradually. We will give here a general overview of the simulation conditions. In the Appendix

the simulation setup is described in detail. In addition, there is R-code exemplifying some of the

simulation results.

In the simulation study, we varied three factors: the generating function, low or high values for

the model parameters, and the sample size. First, we had 5 generating functions for the intercept �0,t

and the autoregressive parameter �1,t: 1) both are invariant over time, 2) both increase linearly over

time, 3) both follow a cosine function over time, 4) both follow a random walk and 5) both follow

a stepwise function (see also Figure 5.4). Note that the random walk and the stepwise function are

non-gradually changing functions. Strictly, the TV-AR model is thus not expected to recover these

functions. Instead, we consider these functions to investigate the robustness of TV-AR in non-gradual

conditions. The second factor we varied was the maximum absolute values of the parameters (low or

high maximum value). The third factor was sample size (30, 60, 100, 200, 400, 1000).

Estimation was executed using five models: A) a TV-AR model using the default settings (a thin

plate regression spline basis using 10 basis functions); B) a TV-AR model with only a time-varying

intercept and a time-invariant autoregressive parameter using the default settings; C) a TV-AR model

with only a time-varying autoregressive parameter using the default settings; D) a standard time-

invariant AR model; and E) a thin plate regression spline basis using 30 basis functions.

We evaluated the estimates of all models with mean squared errors (MSE) and coverage proba-

bilities (CP). Furthermore, we analyzed how well the BIC, AIC and GCV could distinguish between

time-varying and time-invariant processes. Last, we looked at the significance of the parameters and

the e↵ective degrees of freedom (edf) if applicable.

Results and guidelines

The results show that the time-varying AR model was able to estimate all gradually changing gener-

ating functions (invariant, linear, cosine) very well using the default settings of the mgcv package in

R (i.e., using 10 basis functions and thin plate regression splines; see Figure 5.4 and 5.5). Around 200

time points were needed for detecting a small change, such as a small linear increase over time, but

large changes could already be detected with 60 time points.

In general, none of the model selection methods (BIC, AIC and GCV) performed well in selecting

the correct model out of models A, B, C and D (e.g., with 100 time points in the high condition of the
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5.4. Guidelines regarding the TV-AR model: a simulation study

linear increase, the BIC selects the correct model (model A) in only 60% of the cases). However, the

BIC does relatively well in distinguishing between the time-invariant model D and the time-varying

models (the three variants A, B and C combined). For example, with 100 time points in the high

condition of the linear increase, the BIC selects the correct class (invariant versus time-varying) in

circa 97% of the cases.10

As the BIC cannot be used for selecting the exact time-varying model (model A, B or C), addi-

tional criteria are needed. One possibility is to fit a TV-AR model and check the significance of the

parameters (intercept and autoregressive parameter). If the intercept is significant, one can be confi-

dent that the intercept is time-varying, especially with at least circa 100 time points. This is because

the TV-AR model automatically includes an (standard time-invariant) intercept, and significance im-

plies that another, time-varying, intercept is needed. In contrast, in the case of the autoregressive

parameter, significance entails that the parameter is valuable for the model, and thus should be kept,

but it does not give information about whether it is a time-varying parameter or not. Additionally, a

high edf is an indication that the parameter is time-varying, but note that the edf cannot be used to

discriminate between time-invariant parameters and linearly increasing time-varying parameters, as

they will often both have an edf of circa 2.

Even when the assumption of gradual change was violated, the TV-AR model was still able to

estimate the general pattern of change (i.e., the trend-like fluctuations in the random walk), but

not abrupt changes (such as in the stepwise function) or fast changes (i.e., the small-magnitude

fluctuations in the random walk process). An exception was the condition with 1000 time points of

the stepwise function, where the large jump could be detected quite well (see Figure 5.5). To get

satisfying estimations in these cases, more time points are needed, and the amount of basis functions

should be large enough. In general, it is advisable to always check whether you have enough basis

functions. A good indication that you do not have enough basis functions and should increase their

number is that the e↵ective degrees of freedom (edf) come close to the number of basis functions

(Wood, 2006). The simulation study showed that the average coverage probabilities of especially the

non-gradually changing functions are clearly improved by increasing the number of basis functions

(in this case from 10 to 30 basis functions; see Table 5.1). This lines up well with the advice given

in general to have a high enough number of basis functions to allow for enough wiggliness in the

estimated function (Wood, 2006).

.

10Note that the AIC and GCV were not as accurate as the BIC. For example, with 100 time points in the high
condition of the linear increase, the AIC and GCV selected the correct class (invariant versus time-varying) in only 73%
and 76% of the cases respectively.
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Figure 5.4: Graphical representations of the generating functions of the autoregressive parameter for
the low condition. The di↵erent true underlying functions �1,t are represented as thick black solid lines

and the estimated �̂1,t as grey solid lines, the grey dashed lines being the 95% CIs. The estimations
are based on the median of the MSE values of the 1000 replications.

5.5 An empirical example

We applied the TV-AR model to data of two individuals who took part in a long isolation study,

the MARS500 project, in which psychological and physiological data have been collected to study

the e↵ects of living in an enclosed environment for the duration of a real potential mission to Mars

(i.e., 520 days; for more information see http://www.esa.int/Mars500). We focus here on emotional

inertia, which is studied in the context of a↵ective research. Emotional inertia is defined as the

temporal dependency of individual emotions, or the self-predictability of emotions, and is typically

modeled with an AR model (Kuppens, Allen, & Sheeber, 2010; Suls et al., 1998). However, a study

by Koval and Kuppens (2012) showed that emotional inertia is not a trait-like characteristic, but is

itself prone to change, causing the data to be non-stationary (see also de Haan-Rietdijk et al., 2014;
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Figure 5.5: Graphical representations of the generating functions of the autoregressive parameter for
the high condition. The di↵erent true underlying functions �1,t are represented as thick black solid lines

and the estimated �̂1,t as grey solid lines, the grey dashed lines being the 95% CIs. The estimations
are based on the median of the MSE values of the 1000 replications.

Koval et al., in press). They showed, among other things, that individuals who anticipated a social

stressor had a significant decrease in their emotional inertia, which means that to model the process of

inertia correctly, the autoregressive parameter should be allowed to vary over time. In the MARS500

example, being isolated can be seen as a social stressor. Furthermore, it is plausible that the longer

one is isolated, the more social stress there is. To study if and how inertia changed due to social

isolation, we analyzed time series data from two persons involved in the MARS500 study using the

TV-AR model.
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5. Time-varying autoregressive models using GAM

Table 5.1: Coverage Probabilities (CP) of the autoregressive function in % using thin plate regression
splines. Here the average CP of every simulation condition is given. Low and high stand for low and
high value conditions for the maximum absolute values of the time-varying parameters. Note that the
last line in the table uses the same settings as the previous line, except now 30 instead of 10 basis
functions (K) are used.

True underlying function
Invariant Linear Cosine Random Step

N Low High Low High Low High Low High Low High
30 86 67 89 83 89 83 92 87 89 78
60 92 84 93 91 91 84 94 88 91 83
100 93 90 93 91 92 85 93 86 92 83
200 95 92 95 94 89 92 92 84 90 79
400 95 93 95 94 87 94 91 81 86 80
1000 95 95 95 95 89 96 86 78 82 82

1000 K = 30 95 94 94 95 91 96 87 83 84 87
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Figure 5.6: The raw data of the variable valence for participant 1 (left) and participant 2 (right).

Method

Data description

The MARS500 study consisted of six healthy male participants (average age was 34 years), who all

signed a written informed consent before participating in this experiment. In accordance with the

Declaration of Helsinki, the protocol was approved by The Ethics Committee of the University Hospital

Gasthuisberg of Leuven (Belgium) and the ESA Medical Board before the research was conducted.

We focus here on the dynamics of the variable ‘valence’ of two participants. Each morning, the
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participants indicated on a 21 ⇥ 21 grid how they were feeling at that moment. The horizontal axis

of the grid referred to valence and the vertical axis to arousal. Only the valence score (on 21-point

scale) will be analyzed here. A high score indicates experience of highly positive feelings, and a low

score experience of highly negative feelings.11 There was 29% and 18% missingness in the data of

participant 1 and 2 respectively (see Figure 5.6 for the raw data).12

Analyses

We consider the following four models:

In model 1, both the intercept and the autoregressive parameter are allowed to vary over time.

The time-varying autoregressive parameter implies that the temporal dependency or emotional inertia

(i.e., how self-predictable the emotion is) changes over time. Since the mean (or the attractor of the

process) is a function of the intercept and the autoregressive parameter, it most likely also changes

over time in this model:13

V alence
t

= �0,t + �1,tV alence
t�1 + "

t

. (5.11)

In model 2, the intercept is allowed to fluctuate over time, but the autoregressive parameter is

fixed over time, meaning that the temporal dependency (or emotional inertia) is time-invariant. Due

to the changing intercept, the person’s attractor also changes over time:

V alence
t

= �0,t + �1V alence
t�1 + "

t

. (5.12)

In model 3, the intercept is fixed over time, while the autoregressive parameter is allowed to vary

over time. As indicated in the description of model 1, a time-varying autoregressive parameter means

that the temporal dependency (or emotional inertia) of the process changes over time. However, fixing

the intercept implies that the attractor changes over time, but this is fully accounted for by changes

in the temporal dependency (i.e., the autoregressive parameter):

V alence
t

= �0 + �1,tV alence
t�1 + "

t

. (5.13)

Finally, model 4 is the standard AR(1) model, in which both the intercept and the autoregressive

11Although the measurement was done on a daily basis, on some days there were multiple measures, which was due
to extra physiological tests that required additional measurements of valence and arousal. In these cases, we only used
the first measure of the day.

12Note that the TV-AR model can also be used with missing data, although the more missingness the less power one
has to detect the underlying process. Additionally, one has to assume that the missingness is (completely) at random.

13Of course it is possible, though unlikely, that the changes in the autoregressive parameter are exactly countered by
the changes in the intercept (see Equation 5.6). In this case, the attractor would be time-invariant, while the temporal
dependency would fluctuate over time.
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5. Time-varying autoregressive models using GAM

parameter are time-invariant; as a result the mean (i.e., a time-invariant attractor) is also fixed over

time. This means that the temporal dependency (or emotional inertia) is completely constant over

time, that is, both the temporal dependency (or emotional inertia) and the attractor value of the

process remain the same over time:

V alence
t

= �0 + �1V alence
t�1 + "

t

. (5.14)

Following the guidelines presented in the previous section, we first checked if the process was

time-varying or not. For this purpose, we used the BIC: If the BIC selects model 1, 2 or 3 the

process is probably changing over time, and otherwise (i.e., if model 4 is selected) the process is

probably time-invariant. In the latter case, a standard AR model should be used; otherwise a TV-AR

model is appropriate. Secondly, to check which parameters are time-varying, we considered whether

the smooth parameters were significantly di↵erent from zero and thus were needed in the model. As

noted before, a significant intercept indicates that this parameter is time-varying, whereas a significant

autoregressive parameter does not entail that it is time-varying. Therefore, in a third step, when the

autoregressive parameter was significant we checked if the edf was higher than 1. Additionally, we

checked whether the residuals (estimated innovations "̂
t

) indicated autocorrelation over time, satisfied

the equal variance assumption and were normally distributed.

The analyses reported here were based on the default settings, that is, a thin plate regression spline

basis with 10 basis functions (i.e., K = 10). We also ran all of the analyses with a cubic regression

spline basis and thin plate regression splines with 30 basis functions (i.e., K = 30), but all results

were highly similar and led to the same conclusions.

Results

As can be seen in Figure 5.6 (left panel), in the data of participant 1, a clear trend is apparent,

whereas the data for participant 2 do not contain any clear time trend (Figure 5.6 right panel). For

both participants the assumptions held for the selected models: The residuals for both participants

did not indicate any autocorrelation over time, did not violate the equal variance assumption and

were normally distributed.

For participant 1, the BIC indicated that the underlying process was varying over time and thus

non-stationary (model 2 was selected as the best model, although the di↵erences between model 1

and 2 were fairly small, see Table 5.2). Consequently, fitting the TV-AR model showed that the

function of the intercept was significantly di↵erent from zero (F = 3.42, p = 0.0046, edf = 4.50,

ref.df = 5.20), while the function of the autoregressive parameter was not (F = 0.87, p = 0.51,

edf = 5.01, ref.df = 5.62). Thus, only a time-varying intercept was needed in the TV-AR model.
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Based on visually inspecting Figure 5.7, the function of the intercept process (upper panel) is clearly

varying over time, whereas the CIs of the function of the autoregressive parameter (middle panel)

always include zero (the zero is represented by the dashed gray line) and the function does not clearly

go up or down at any point in time. Taking all of these considerations into account, model 2, with

a time-varying intercept and a time-invariant autoregressive parameter of zero, seems to be the best

fitting model.

For participant 2, the BIC indicated that model 3 had the best model fit and thus a TV-AR

model was estimated. In line with this result, model 1 (Equation 5.11) implied that the function of

the autoregressive parameter was significant and should be kept in the model (F = 8.32, p < 0.0001,

edf = 5.17, ref.df = 6.15), while the function of the intercept was not significant and thus time-

invariant (F = 0.15, p = 0.70, edf = 1.00, ref.df = 1.00). Although significance does not imply

that the autoregressive parameter is time-varying, the edf was clearly higher than 1. In addition,

visual inspection of Figure 5.8 also clearly indicates that the autoregressive function (middle panel)

of participant 2 changes over time. Thus, model 3, with a time-invariant intercept and a time-varying

autoregressive parameter, seems to be the best model.

Table 5.2: Model selection for participants 1 and 2 using the BIC indices. Lowest fit indices are in
bold.

Model BIC Participant 1 BIC Particpant 2

Model 1 688 1, 896
Model 2 684 1, 894
Model 3 696 1, 890
Model 4 868 1, 899

In sum, in the data for participant 1, no inertia or autocorrelation of valence in the data is apparent,

but rather it is the intercept that changes (see Figure 5.7 panel 3). In this specific case, the attractor

is equal to the intercept as the autoregressive parameter equals zero. Participant 1 simply feels less

happy as the isolation experiment proceeds, as represented by the changing intercept and attractor.

This is not necessarily in contradiction with the results found by Koval and Kuppens (2012) as we do

not know how much emotional inertia participant 1 had before the isolation experiment. It is possible,

for example, that this participant had some level of emotional inertia before going into isolation, but

as soon as the experiment started, his emotional inertia decreased to zero, which would be in line

with the previous findings of Koval and Kuppens (2012). In contrast, participant 2 starts the isolation

experiment relatively happy and with a high spill-over of valence (high inertia), but already after a

few days, his inertia decreases until it gets to zero around 100 days, and also his valence becomes
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5. Time-varying autoregressive models using GAM

more negative (see the attractor in the last panel of Figure 5.8). Towards the end of the experiment,

there is again a light increase in his feeling of happiness and his inertia. This result is in line with

research of Koval and colleagues, which suggests that as stress increases (the longer one is isolated)

inertia decreases, and thus a↵ect becomes less predictable (Koval & Kuppens, 2012).

Note that if one had ignored this non-stationarity in the data, a standard autoregressive model

(thus, model 4 ) would have led to inaccurate conclusions about these two participants. For participant

1, ignoring non-stationarity would have led to inferring a highly significant autoregressive coe�cient

(�1 = 0.85, t(325) = 27.43, p < 0.0001), that is, an extremely high inertia or a high predictability of

his valence. For participant 2, ignoring non-stationarity would have led to the conclusion that there

was a positive inertia (�1 = 0.20, t(420) = 4.29, p < 0.0001), and the fact that his inertia was actually

varying over time would have gone unnoticed.

In general, even though inertia is already well known to vary in strength greatly across individuals,

it is still often studied as a trait of an individual. With the TV-AR model we can study inertia

throughout the whole study period, creating an inertia value for every single time point. In future

studies, it would be fruitful to take into account that inertia can change over time, even from day to

day or faster, and of course, also in other contexts than social stress.

Furthermore, these two applications show how important it is in general to use a TV-AR model, as

di↵erent conclusions would have been drawn with a standard AR model. In addition, with the TV-AR

model trends as well as (time-varying) autoregressive parameters can be detected in one step: Even

though the first example above (participant 1) involves a trend-stationary process and pre-specifying

the exact (non-linear as the edf of 4.50 indicates) trend would have led to the same conclusions, this

would have been much more di�cult than with the TV-AR model. Psychological data can be non-

stationary for various reasons, and the TV-AR model o↵ers a simple exploratory tool for detecting

such changing dynamic processes.

5.6 Discussion

In this paper, we have introduced a new way to study changing dynamics: the semi-parametric TV-

AR model. This model fills a gap in the literature, because most standard autoregressive models

do not take into account non-stationarity, even though many psychological processes are likely to be

non-stationary. Therefore, there is a need for an easily applicable method for studying such non-

stationarity or changing dynamics. The semi-parametric TV-AR model presented in this article is

exactly such a tool.

As shown by the simulations and application in this paper, the TV-AR model can estimate non-

stationary processes well and has significant potential for studying changing dynamics in psychology.
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Figure 5.7: Estimation results for the TV-AR model for participant 1. Every panel represents a
di↵erent parameter of the TV-AR model: the upper panel the intercept, the middle the autoregressive
and the lowest the attractor. Note that the attractor process is plotted over the actual valence scores
(represented in grey).
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Figure 5.8: Estimation results for the TV-AR model for participant 2. Every panel represents a
di↵erent parameter of the TV-AR model: the upper panel the intercept, the middle the autoregressive
and the lowest the attractor. Note that the attractor process is plotted over the actual valence scores
(represented in grey).
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For example, the TV-AR model can help to detect and specify di↵erent kinds of non-stationarity

in the data. Currently, it is common practice to focus on the trend that is apparent in the data,

and to transform the time series so that it becomes trend stationary. However, even if the trend

could be perfectly specified, which is often di�cult, non-stationarity may not be fully accounted for,

since the autocorrelation structure of the data can also change over time. Furthermore, a changing

autocorrelation is not easy to detect visually, nor is there a test to detect such non-stationarity. With

the semi-parametric TV-AR model, all such problems can be dealt with in one single step: Trends in

the data and changes in the autoregressive process can be detected at once, and even more importantly,

no pre-specifications are necessary, as has been shown in the real data application.

It is therefore clear that the semi-parametric TV-AR model is important in the case of non-

stationary data. However, its potential range of application is much broader. As little is known about

how and when psychological dynamics change, we would recommend to always run a TV-AR model

next to a standard AR model as part of regular analysis if enough time points (circa 100) are available.

In this way, the model can be used as a diagnostic tool for probing whether there is non-stationarity in

the time series, and for detecting and specifying changing dynamics, such as the trend. For example, if

the time series turns out to have a trend that is linear instead of non-parametric, a simpler parametric

model can be specified based on the TV-AR analyses.

We have considered the simplest form of a TV-AR model, and will now elaborate on some of the

extensions that are possible. We studied temporal dependency with a lag order 1 TV-AR model, but

one can imagine that the temporal dependency is not only apparent between the two closest occasions,

but also between occasions further apart, in which case a TV-AR model with lag order 2 or larger is

necessary. Such extra lags can be easily added into a TV-AR model in the same manner as they are

added into standard AR models through the inclusion of more lagged predictors.

Another sensible extension involves generalization of the model to multivariate data. The TV-AR

model is currently only applicable to the univariate case, while it is often more realistic that a variable is

not only predicted by itself, but also by other variables, which evokes the need to analyze psychological

dynamics as a multivariate system. Such an extension would lead to a time varying vector AR (TV-

VAR) model, and comes with new challenges, as both auto-correlations and cross-correlations would

have to be modeled in this case. Yet another natural, but even more challenging, extension would

be a TV-AR multilevel extension based on current multilevel (V)AR models (Bringmann, Vissers,

et al., 2013; de Haan-Rietdijk et al., 2014; Jongerling, Laurenceau, & Hamaker, 2015). To the best

of our knowledge, this is currently not possible, as the mgcv software cannot be used to estimate

a flexible smooth function for the population (i.e., the population average) and to allow for flexible

interindividual variation for that smooth function. An additional extension could be time-varying error

variance, so that also the time-varying variance of a process could be fully accounted for. However,
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with current software, only the intercept and the autoregressive parameter (and not the error variance)

can be modeled as time-varying parameters. Further research should also consider the combination of

gradual and abrupt changes, so that when the point of an abrupt change is known, it could be easily

adjusted in the TV-AR model.

Even though the TV-AR model is easily applicable, the number of time points needed is a potential

limitation. While 100 time points per participant would be preferable, currently most longitudinal

studies in psychology gather around 60 time points or less (aan het Rot et al., 2012). Another

limitation of the TV-AR is the assumption of gradual change. Although we have shown in the

simulation study that with many time points and a large abrupt change the TV-AR model is quite

robust and still gives an indication of the sudden jump, other models are probably more suitable

for studying sudden change. Such models include the threshold autoregressive model (TAR) (e.g.,

Hamaker, 2009; Hamaker, Grasman, & Kamphuis, 2010), its multilevel extension, multilevel TAR

(de Haan-Rietdijk et al., 2014), or the regime-switching state-space model (cf. Hamaker & Grasman,

2012; Kim & Nelson, 1999).

Furthermore, as the semi-parametric TV-AR model is an exploratory tool, the standard errors

of the time-varying parameters are likely to be less satisfactory compared to confirmatory, raw-data

maximum likelihood approaches, such as the state-space approach. Additionally, estimating a TV-AR

model in a state-space modeling framework has the advantage that measurement error can be taken

into account, which is not possible with the semi-parametric TV-AR model (Schuurman et al., 2015).

Thus, future research should aim at comparing the exploratory semi-parametric TV-AR model with

confirmatory approaches.

In sum, the semi-parametric TV-AR model presented here is an easy to use tool for detecting and

modeling non-stationarity. Many extensions are possible, and future research is needed to uncover

all the possibilities and limitations of this innovative framework. By introducing the model and

explaining its application in standard software, we hope to have made it available to a broad range of

psychologists studying human dynamics.
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Appendix 5 Details of the simulation setup

The description of the simulation study is divided into three steps: (1) simulation conditions, (2)

generating the simulation data and (3) model estimation and evaluation. An overview of these three

steps of the simulation is given in Figure 5.A. The programming language R was used for all statistical

simulations and analyses.

Step 1: Simulation conditions. We varied three factors: 1) the generating function of �0,t

and �1,t (invariant, linear, cosine, random walk and stepwise); 2) the maximum absolute value of the

time-varying parameters (low or high); and 3) the sample size (30, 60, 100, 200, 400, 1000). This

resulted in 60 (5x2x6) di↵erent conditions. A total of R = 1000 replications of each condition were

simulated. We elaborate on the factors below.

1. Parameter generating functions. The intercept (�0,t) and autoregressive parameter (�1,t) of

the TV-AR model were generated with five di↵erent types of functions, three of them gradu-

ally changing and two non-gradually changing. The function generating the attractor (µ
t

) was

indirectly calculated afterwards, see Figure 5.A.

The first of the gradually changing functions is a time invariant function, meaning that the

�0,t and �1,t do not change over time and could therefore also be modeled with a standard AR.

The second is a linear function. In this case �0,t and �1,t increase over time. The third of the

gradually changing functions is a cosine function, where �0,t and �1,t first increase, then decrease

and in the end increase again. The fourth and fifth functions are non-gradually changing, and

thus violate the assumption of gradual change of the TV-AR model. The fourth function is a

random walk function, in which �0,t and �1,t are generated in such a way that they show random

and fast change that can also result in an increase or decrease in the function over a period of

time. The fifth function is a stepwise function, meaning that �0,t and �1,t have for a certain

period of time a constant value, which then changes abruptly to a higher value.

2. Low and high maximum values. Besides the di↵erent generating functions, we also compared

low and high value settings for the maximum absolute values possible for the time-varying

parameters. The maximum absolute values for the low condition for �0,t (the intercept) were 1

and for the high condition 1.5. Thus, for example, the peak values for the cosine function were

1 and -1 in the low condition (and 1.5 and -1.5 in the high condition). The maximum absolute

value for the low and high condition for �1,t (the autoregressive parameter) was set to 0.2 and 0.5,

respectively (based on values typically found in psychological studies, see e.g., Rovine & Walls,

2006). Whereas the invariant, linear, cosine and stepwise function are by definition bounded,
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a random walk is not, so in order to have a bounded random walk with the above mentioned

maximum absolute values we used an adapted version of the formula ⇢a
t

/max0jt

|a
j

|, based on

Giraitis et al. (2014). This formula guarantees that the random walk will be bounded between

the pre-specified �⇢ and ⇢. In this formula, a is defined as follows: a
t

� a
t�1 = ⌘

t

. Here,

the di↵erence between a
t

and a
t�1 equals ⌘

t

, a random number drawn from an independent

identically normal distribution. At every time point ⇢ is multiplied with a
t

and then divided by

the maximum absolute value of a up to current time point t.

3. Sample size. Furthermore, sample sizes (the number of time points, n) were chosen to be

comparable to those possible in psychological research: 30, 60, 100, 200, 400 and 1000. This

will shed light on the amount of time points needed in order for the TV-AR to give a reliable

recovery of the “true” underlying model.14

Step 2: Generating the simulation data. To generate the simulation data, we used the

TV-AR formula introduced in section 3: y
t

= �0,t + �1,tyt�1 + "
t

(see also step 2 in Figure 5.A).

The time-varying intercept �0,t and the time-varying autoregressive parameter �1,t can be gener-

ated after the parameter generating function, the maximum absolute value of the parameters and

the sample size have been set. The residuals "
t

are a white noise process. This is simulated by

drawing n times (with n being the number of time points) randomly from a standard normal dis-

tribution N (0, 1). Since the model is an autoregressive model with a lagged variable, we had to

pre-specify the zeroth observation (y0), which we drew from a stationary marginal normal distribution:

N (
�0

1� �1
,

�2
"

1� �2
1,t

). (5.A)

Marginal means here that the time point is not conditioned on the previous time point (see also

the R-code). Now all further time points of y
t

can be simulated. Note that the generated time series,

as can been seen in Figure 5.A, follows the trajectory of the attractor (µ
t

).

Step 3: Estimation and evaluation. We used seven di↵erent settings for estimating �0,t and

�1,t 15: 1) a TV-AR model using the default setting (a thin plate regression spline basis using 10 basis

functions); 2) a TV-AR model with only a time-varying intercept and a time-invariant autoregressive

parameter using the default settings; 3) a TV-AR model with only a time-varying autoregressive

parameter using the default settings; 4) a standard time-invariant AR model; and 5) a thin plate

regression spline basis using 30 basis functions.

14As pointed out by an anonymous reviewer, the local range of change of the cosine function is dependent upon
sample size: there is a smaller rate of change for larger sample sizes.

15The attractor µt was again indirectly derived from the results of �0,t and �1,t (see Figure 5.A step 3).
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Although 10 basis functions is the standard setting in the mgcv package, this might not always

be enough to capture the wiggliness of a function, especially when a function takes a lot of turns, as

is the case with for example the random walk function. Therefore, it is interesting to check whether

an increase in basis functions leads to better estimations. However, increasing the number of basis

functions requires that there is a large amount of time points. In this simulation, at least 400 time

points were needed for increasing the number of basis functions to 30. Thus, we could only compare

the di↵erence between 10 and 30 basis functions for the sample sizes n = 400 and n = 1000 time

points. Note that sometimes with already 100 time points it is possible to estimate a TV-AR model

with 30 basis functions. However, from 400 time points on, the TV-AR model with 30 basis functions

could be fitted for all 1000 replications, whereas with less than 400 time points this was not always

the case.

To evaluate the global performance of the TV-AR model, we used the log of the median of the

mean squared errors (MSEs) of the R = 1000 replications per condition. The MSE for a single time-

varying parameter is defined as 1
n

P
n

t=1(✓̂t � ✓
t

)2, in which ✓̂
t

stands for the estimated value at time

point t and ✓
t

for the true value at time point t. Any of the parameters �0,t, �1,t or µt

can take the role

of ✓
t

and n stands for the number of time points. In addition, a coverage probability was calculated,

which is the proportion of time that the true value is captured by the constructed CIs.16

An example is given in step 3 of Figure 5.A. All parameters have been estimated with our TV-AR

model after the data were generated. The estimated values ✓̂
t

and the true values ✓
t

of the parameters

are represented as the middle solid black and red lines respectively. In this figure, the black and red

solid line are close to each other, meaning that the model estimates had a low MSE value and the true

underlying function(s) could be estimated well. The estimated CIs corresponding to the dashed lines

show that almost everywhere the true values of the function are within these intervals, meaning that

also the coverage probability was very high and the TV-AR model could estimate the true underlying

model well.

Finally, we evaluated whether we could discriminate between a time-varying and time-invariant

model (models 1, 2, 3 and 4 of step 3). We used the AIC, BIC and GCV to select the best fitting

model for every replication. Next we calculated how often the correct model was selected by these fit

indices. For example, for the cosine generating function condition we calculated how often the BIC

correctly indicated that model 1, 2 or 3 (time-varying models) was the best fitting model versus model

4 (time-invariant model). In addition, the type I and type II errors were calculated. Finally, for both

the intercept and autoregressive parameter, if applicable, the e↵ective degrees of freedom (edf) and

16Although the CIs are given as output for the intercept and the autoregressive parameter, this is not the case for
the attractor, since this time-varying parameter is only estimated indirectly. Therefore, for the smooth function of
the attractor we calculated the CIs independently following the same procedures as in the mgcv package (see also the
R-code).
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p-values were extracted.
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Figure 5.A: The simulation setup. The simulation setup consists of three steps. Step 1 represents
the simulation conditions, step 2 the generation of the simulation data and step 3 the estimation and
evaluation of the TV-AR model.
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6 Matching Structural, E↵ective, and Functional

Connectivity: A Comparison Between Structural

Equation Modeling and Ancestral Graphs

The brain is a network of brain regions that are connected by anatomical tracts (Rubinov & Sporns,

2010; van den Heuvel & Pol, 2010). Brain connectivity can be studied at a structural (anatomical)

and a functional level in a noninvasive way by magnetic resonance imaging (MRI) techniques. At the

structural level, connectivity refers to the anatomical links of the brain that are made up of white

matter tracts which can be modeled by di↵usion tensor imaging (DTI) (Guye, Bartolomei, & Ranjeva,

2008; Johansen-Berg & Behrens, 2006; Rykhlevskaia, Gratton, & Fabiani, 2008; Tournier, Mori, &

Leemans, 2011). At the functional level, connectivity reflects statistical associations (e.g., correlations)

between regions based on indirect detection of neural activity through blood oxygen level-dependent

(BOLD) signals measured with functional MRI (fMRI) (Bullmore & Sporns, 2009; Friston, 2011; He

& Evans, 2010)

Connectivity at the functional level can be further divided into functional and e↵ective connectiv-

ity. Functional connectivity is defined as the (temporal) correlation between di↵erent brain regions,

whereas e↵ective connectivity refers to the influence that one brain area exerts on another (Büchel

& Friston, 1997; Bullmore & Sporns, 2009; Friston, 2011; Telesford, Simpson, Burdette, Hayasaka,

& Laurienti, 2011). In contrast to functional connectivity, where connections are undirected, e↵ec-

tive connectivity contains directed connections, implying a causal relationship between brain regions

(Zhang et al., 2008; but see Ramsey et al., 2010 for a critical review on causality in e↵ective connec-

tivity in brain networks). Since e↵ective connectivity is more informative, it is preferred to functional

connectivity. Several methods have been proposed to examine e↵ective connectivity; for example,

structural equation modeling (SEM) (Büchel & Friston, 1997; Gonçalves & Hall, 2003; Mclntosh &

Gonzalez-Lima, 1994), dynamic causal modeling (Friston, Harrison, & Penny, 2003; Friston, 2011),

and Granger causality analysis (Eichler, 2005; Roebroeck, Formisano, & Goebel, 2005). Among these

methods, SEM has been one of the most commonly used (Friston, 2011; Penny, Stephan, Mechelli,

& Friston, 2004). In the SEM method, composing a model is always hypothesis–driven, and stan-
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6. A Comparison Between SEM and AGs

dard SEM models contain only directed connections (Mclntosh and Gonzalez-Lima (1994); see also

McIntosh, Grady, Haxby, Ungerrleider, and Horwitz (1996) for examples of SEMmodels with recurrent

connections).

A common problem of SEM and most other methods for assessing e↵ective connectivity is that

they implicitly assume that all relevant regions are in the model (except for Eichler’s method; Eichler

(2005)), because, for example, a region was not deemed relevant, or it did not pass a (corrected)

threshold. This is a problematic assumption, because these missing regions can result in spurious

connections, meaning that although the model indicates a direct connection between area A and B,

the connection between the two areas is actually indirect, due to, for example, an unmeasured common

cause, area C (Eichler, 2005; Waldorp et al., 2011). In contrast, ancestral graphs (AGs) represent a

class of models for e↵ective connectivity that can detect missing regions in a model (Waldorp et al.,

2011). Most methods examining functional or e↵ective connectivity use only undirected (functional

connectivity) or directed (e↵ective connectivity) connections, whereas AGs can model undirected,

directed, and bidirected connections (Richardson & Spirtes, 2002). Intuitively, a directed connection

represents e↵ective connectivity, an undirected connection represents functional connectivity, and a

bidirected connection can be interpreted as an indirect connection that is due to an unobserved area.

Hence, AGs are able to explicitly indicate missing brain regions (Waldorp et al., 2011).

In this study, we compared the conventional SEM method for studying e↵ective connectivity with

AG. Five participants were measured using fMRI while performing one of three visual perception

tasks. Since brain connectivity patterns are likely to be di↵erent between individuals (Horwitz et al.,

2005), e↵ective and structural connectivity were estimated for each of the five subjects separately.

To estimate e↵ective connectivity, we analyzed fMRI data for six regions of interest (ROIs) of a task

in which motion-defined figures were presented. The ROIs used in the current study included areas

V1, V2, and V3 taken together, because this is where the vast majority of visual information enters

the brain. We also selected area LO in the lateral occipital cortex because of its involvement in

shape processing (Grill-Spector, Kourtzi, & Kanwisher, 2001; Malach et al., 1995) and area middle

temporal (MT), because it plays a central role in motion processing (Albright, 1984; Albright &

Stoner, 1995; J. D. Watson et al., 1993). Finally, we included area inferior temporal (IT) because

of its role in object perception and integration of information from lower-tier areas (Tanaka, 1996).

For each subject and each condition of the task, the best model was selected for AG and SEM. The

determination of whether SEM or AGs was better for estimating e↵ective connecitvity was based on

the ability of predicting structural connections found with tractography based on DTI. Connection

probabilities were estimated with DTI probabilistic tractography between the same six ROIs as used in

the e↵ective connectivity analyses. Thus, DTI tractography was used to examine whether connections

found with e↵ective connectivity are also likely to be present at a structural level.
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6.1. Material and Methods

We show that, in general, AGs result in more accurate models than SEM. The reason for this is

that missing regions are taken into account when modeling with AG but not when modeling with

SEM: AG can be used to explicitly test the assumption of missing regions. If the set of regions is

complete, SEM and AG perform about equally well.

6.1 Material and Methods

Subjects

Five healthy subjects (three men; mean age: 27.4 years; range: 24-31 years) without any history of

neurological or psychiatric disease participated in the study. Three subjects were right handed, and the

other two were left handed as was indicated by the Edinburgh Handedness Inventory (Oldfield, 1971).

All experimental procedures were approved by the ethics committee of the Faculty of Psychology of

the University of Amsterdam, with all subjects providing written informed consent. Subjects had

normal or corrected-to-normal vision.

Task and procedure

Before the actual fMRI experiment, subjects practiced the experiment outside the scanner for 20 min

to familiarize themselves with the task. During the fMRI experiment, stimuli were projected on a

screen at the end of the scanner. Subjects viewed the screen via a mirror system attached to the MRI

head coil. To reduce motion artifacts subjects heads were immobilized using foam pads. Subjects

received earplugs and a headphone to decrease scanner noise. The start of a run was triggered by

scanner pulses, and stimuli were presented with presentation (Neurobehavioral Systems, Inc.).

Subjects had to discriminate between three stimulus conditions: a Frame, a Stack, and a Homoge-

nous condition (see Figure 6.1), by pressing one of three buttons, each corresponding to a condition.

Each stimulus consisted of a displacement of randomly distributed black and white dots, which had

the size of a pixel. The displacement happened in one out of four directions: 22.5�, 67.5�, 112.5�, or

157.5�. A stimulus contained three regions: the background, the frame, and the inner region. Stimulus

presentation started with the background region (randomly distributed black and white dots), which

changed after 100 msec into one of the three stimuli conditions and after another 100 msec into the

background again.

In the Frame condition, the dots of the frame region moved in a di↵erent direction from the

background and the region inside the frame. The Stack condition was similar to the Frame condition,

except that the dots within the inner region moved in a di↵erent direction from the background as

well as from the frame. In the Homogenous condition, the dots in the frame and inner region moved
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a   b 
Figure 6.1: The first part (a) represents the Stack, the Frame, and the Homogenous condition,
respectively. The second part (b) represents the four di↵erent directions of dot displacement.

homogenously with regard to the background, in which case almost no frame or inner region movement

was visible (Scholte, Jolij, Fahrenfort, & Lamme, 2008). Each trial was presented in 300 msec and

was followed by an inter-trial interval of 6 sec. To optimize the measured signal, seven stimuli per

trial were presented on the screen: three squares on the left, three on the right side of the screen, and

one in the middle.

Magnetic resonance imaging

Scans were conducted on a 3T magnetic resonance scanner (Philips Achieva) that was equipped with a

32-channel SENSE head coil. To obtain DTI and fMRI data, three scanning sessions were performed.

The first scanning session was used to acquire DTI data, and the last two scanning sessions were used

to acquire the fMRI data. Besides the main task, cortical mappers were used.

fMRI acquisition

The experimental setup was an event-related design, meaning that participants were randomly pre-

sented as a Stack, Frame, or Homogenous stimulus; while fMRI recordings of the BOLD response

were made at regular intervals. The stimuli were presented in a pseudo-random order for 20 times per

stimulus type over two runs. One run lasted for approximately 10.6 min and consisted of acquiring

288 volumes (GE-EPI, 2002 mm field of view [FOV]; 802 in-plane resolution; 38 slices, 2.5mm slice

thickness; 0.25mm slice spacing; repetition time [TR], 2200 msec; echo time [TE], 29.93 msec; flip

angle [FA], 80�, SENSE factor 2). Furthermore, high-resolution T1-weighted anatomical images (T1;

turbo field echo, 1602 mm FOV; 2562 in-plane resolution; 160 slices, 1mm slice thickness; TR, 8.159

msec; TE, 3.73 msec; FA, 8�) were obtained from each subject for registration purposes.

112



6.1. Material and Methods

fMRI preprocessing and analysis

Preprocessing and statistical analyses of the functional data were performed with FEAT (FMRI Expert

Analysis Tool) version 5.98, part of FSL (Oxford Center for Functional MRI of the brain (FMRIB)

Software Library (www.fmrib.ox.ac.uk/fsl) (S. M. Smith et al., 2004)) and Matlab (Mathworks,

Inc.). Preprocessing of functional images included head motion correction, slice time correction, brain

extraction, spatial smoothing using a Gaussian kernel of Full Width at Half Maximum of 2 mm,

and a high-pass cut-o↵ in the temporal domain using a Gaussian kernel with a standard deviation

of 100s. As a final preprocessing step, the functional data were aligned to the T1 image of the

subject, and the data of each subject were transformed to MNI152 (Montreal Neurological Institute)

using FNIRT nonlinear registration. Both functional and structural analyses were done for apriori

defined ROIs. Selection of the ROIs was based on a large number of studies on object processing

and motion perception (e.g., Albright, 1984; Grill-Spector et al., 2001; Malach et al., 1995; Tanaka,

1996; J. D. Watson et al., 1993). The six ROIs were V123, IT cortex, MT area of the left and right

hemisphere, and LO area of the left and right hemisphere. Region V123 was defined according to

the Jülich histological atlas (Amunts et al., 2005), and the IT cortex was defined according to the

Harvard–Oxford cortical structural atlas (available at www.cma.mgh.harvard.edu).

Since the IT cortex has some overlap with the MT and LO areas, the posterior part of the IT

was left out of the IT ROI to prevent overlap. Both the Jülich and the Harvard–Oxford atlas are

probabilistic, and, therefore, the threshold of a voxel belonging to the V123 or IT ROI was set at a

probability of 25%. Since there are large individual di↵erences for the exact location of the MT and

LO areas, we used standard functional mappers to localize these brain regions (J. D. Watson et al.,

1993). The fMRI settings for these functional mapping scans were the same as described earlier. The

data from these mappers were analyzed with a general linear model (GLM), including regressors for

each condition.

The functional data were modeled using a GLM at a single subject level using FMRIB’s improved

linear model with local autocorrelation correction using an AR(1) model (Woolrich, Ripley, Brady, &

Smith, 2001). The event onsets of each trial from a specific condition were convolved with a canonical

hemodynamic response function (double gamma) to generate the regressors used in the GLM. Results

were rendered on Z statistic images thresholded by Z > 5.3 with an uncorrected significance threshold

of p = 0.05. This resulted in the mean parameter estimates (PE) of only the active voxels of each

ROI per trial, condition, and subject.
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DTI acquisition

In a di↵erent session, di↵usion-weighted images (TR 6345 msec, TE 76 msec, FA 90�, 1202 mm

FOV, 2242 in-plane resolution, 60 slices, b = 1000 msec) were acquired along 32, 48, and 64 collinear

directions for obtaining detailed DW images. Each series of directions was preceded by acquisition

of a non-di↵usion-weighted volume for purposes of registration and motion correction. The sum of

di↵usion-weighted volumes was 575 (4 ⇤ 32, 3 ⇤ 48, 2 ⇤ 64). Total acquisition time was 110 min.

DTI preprocessing and analysis

All DTI preprocessing and analyses were conducted using FSL tools (www.fmrib.ox.ac.uk/fsl).

Di↵usion data were corrected for eddy currents and possible head motion (Jenkinson & Smith, 2001).

Next, all non-brain data were discarded, and images were aligned to MNI152 standard space. This

ensured that the DTI data were in the same space as the functional data. Images from all subjects

were visually inspected to confirm a close registration.

To study the structural connectivity between the six ROIs (V123, IT, MTleft, MTright, LOleft,

and LOright; see also fMRI section preprocessing and analysis), we used probabilistic fiber tracking

by applying the FMRIB Di↵usion Toolkit. Subsequently, the BEDPOSTX tool, which runs a Markov

Chain Monte–Carlo estimation process, was used to create distributions of di↵usion parameters de-

scribing the principle water di↵usion direction in each voxel (Behrens et al., 2003). For each voxel

included in the ROI or seed mask, 5000 streamline samples were taken from the distribution. This

resulted in a probabilistic map indicating the connections of each voxel included in the seed mask

with the rest of the brain. Next, the probability map was filtered so that only the streamlines con-

necting the voxels of two di↵erent ROIs, the seed ROI and the target ROI, were taken into account.

Probabilistic tractography between two ROIs was done in both directions; for example, from V123

to IT and back. We summed up the number of streamlines that left the seed ROI and reached the

target ROI. The number of completed streamlines reflects the confidence that a connection exists at a

structural level (Tournier et al., 2011; see also Jones, 2010 for a critical review on DTI as a measure of

structural connectivity). These derived pathway strengths are then an (indirect) measure of structural

connectivity (Jbabdi & Johansen-Berg, 2011). This number was divided by the volume of the seed

and target mask to normalize for between-subject variability in area size.

SEM and AG connectivity analysis

Figure 6.2 demonstrates the procedure for SEM and AG connectivity analysis. The first three steps

are identical for the SEM and AG methods. As described earlier, the event-related BOLD fMRI data

were used as input to a GLM, which resulted in PEs of neural activation for all six ROIs (averaged
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over voxels within ROIs) per condition specific trial. Error trials were excluded from the connectivity

analysis. Importantly, connectivity analysis in both SEM and AG is based on the replication of the

condition-specific trials and not on the time series. In this way, SEM and AG do not depend on the low

temporal resolution of time series in fMRI but on the number of replications per condition (Waldorp

et al., 2011). Based on the PEs of single trial data, the covariance matrices for each condition and

each subject were determined. Since there were three task conditions and five subjects, this resulted

in 15 data covariance matrices.

1 

2 

3 

4 

5 
AIC 

BOLD GLM 

ROIs Covariance matrix 

Model comparison for  AG 
and SEM models 

Best model 
AG and SEM 

Figure 6.2: Procedure of e↵ective connectivity analysis for AG and SEM. (1) The event-related BOLD
fMRI data are used as input to the GLM. (2) This results in the mean parameter estimates of the
neural activation of all six ROIs per condition-specific trial. (3) Based on this, the data covariance
matrices for each condition and each subject are determined. (4) Based on the covariance matrices, the
model fit of di↵erent models is compared. (5) The lower the AIC, the better the model fit. Choosing
the best model is based on a joint probability of AIC and robustness probability. AG, ancestral graphs;
SEM, structural equation model; fMRI, functional magnetic resonance imaging; BOLD, blood oxygen
level dependent; GLM, general linear model; AIC, Akaike’s information criterion.

In SEM as well as AG, the parameters of the connectivity models, including the path coe�cients or

path strengths and the error terms, are estimated by minimizing the di↵erence between the observed

and estimated covariance matrix using maximum likelihood. The methods di↵er, however, in the way

in which the population error covariance matrix is modeled. While SEM assumes (most often) that the

errors of the regressions (e↵ective connectivity) are uncorrelated, AG distinguishes between correlated

and uncorrelated errors (Richardson & Spirtes, 2002), providing a way to determine whether there

are missing regions. Consequently, in standard SEM, ⌃ can only be estimated based on directed
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connections, regressions, which implies e↵ective connectivity and is indicated by B in SEM (Mclntosh

& Gonzalez-Lima, 1994). Furthermore, the error structure, denoted by �
"

, is almost always specified as

a diagonal covariance matrix, meaning that the estimated error structure in the model is uncorrelated

(Gates, Molenaar, Hillary, Ram, & Rovine, 2010; Mclntosh & Gonzalez-Lima, 1994).

In AG, two other connection types can be identified besides directed connections (denoted by B):

undirected connections (denoted by ⇤) and bidirected connections (denoted by ⌦). Directed connec-

tions are ordinary regression parameters, implying e↵ective connectivity; while undirected connections

are partial covariances (unscaled partial correlations), implying functional connectivity. Bidirected

connections refer to the covariance of the residuals from the regressions. Such a covariance implies

that there is an unexplained structure in the residuals, meaning that a parameter (a brain region)

is missing from the model (Waldorp et al., 2011). It should be noted that bidirected connections in

AG are not the same as reciprocal connections in SEM; in AG, undirected edges are used to indi-

cate reciprocal information flow and are, therefore, similar to the reciprocal connections in SEM. The

covariance matrix is modeled by SEM and AG, respectively:

SEM : ⌃ = (I �B)�1�
"

(I �Bt)�1 (6.1)

AG : ⌃ = (I �B)�1

0

@⇤�1 0

0 ⌦

1

A (I �Bt)�1 (6.2)

where I is the identity matrix, t indicates transposition, and �1 indicates inversion. Thus, the

AG method can model both e↵ective (directed connections) and functional connectivity (undirected

connections), and it can indicate missing regions (bidirected connections; see Waldorp et al., 2011);

whereas standard SEM only models direct e↵ective connections. How well the estimated covariance

matrix of the model fits the data covariance matrix is indicated by Akaike’s information criterion

(AIC; Akaike, 1974), which involves the log-likelihood L(✓) with q parameters collected in the vector

✓ for model or graph G
q

:

AIC(G
q

) = �2L(✓) + 2q. (6.3)

The di↵erences between the AICs of di↵erent models are often small, which makes it di�cult to

distinguish between models. To overcome this problem, we used Akaike weights, that is, we normalized

the AIC di↵erences and treated them as probabilities (Burnham & Anderson, 2004; Wagenmakers &

Farrell, 2004). This was done with the following formula, where W stands for Akaike weights, � is

the di↵erence between the lowest AIC and a current model in AICi, exp() is the natural exponent,
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and R is the number of models in the probability space:

W
i

=
exp(��

i

/2)
RP

r=1
exp(��

r

/2)

.
(6.4)

The probabilities were given for the 20 models (R = 20) having the lowest AIC. In order to choose the

best model of the 20 models selected with the AIC, we also considered the robustness of the model.

The degree of robustness depends on how many connections in the model are also present in the other

models. A model has a higher degree of robustness if the connections of the model are in all or most

of the other 20 models as well, indicating that the connection is invariant over di↵erent configurations

in a graph. Thus, besides Akaike weights, we also take robustness into account when selecting the

best-fitting model. This leads to the following joint probability of AIC and robustness probability:

P (AIC and robustness|data) = P (AIC|data)P (robustness|data). (6.5)

The model with the highest joint probability was selected as the best-fitting model for each subject

and condition.

In SEM, composing a model is always hypothesis–driven, because no data–driven method is avail-

able. We, therefore, constructed models for the SEM method based on previous research. The areas

that make up the visual cortex are vastly interconnected. One approach to modeling their organization

is to presume that processing is both distributed and hierarchical (Felleman & van Essen, 1991). From

this perspective, it would be expected that information is relayed from the earliest, very broadly tuned,

visual areas (V123) to somewhat higher-tier processing stations devoted to motion signals (MT) and

object shape perception (LO) before being finally relayed to pure object processing areas (IT). It is,

however, clear that there are many projections between di↵erent visual areas (Felleman & van Essen,

1991) and that these, furthermore, not only project from lower-tier to higher-tier areas but also vice

versa (Lamme & Roelfsema, 2000).

Based on this, we constructed three models having directed connections that either start from the

V123 area going up to the IT area via the MT and LO areas (model 1, see also Fig. 8) or start from the

IT area going down to the V123 via LO and/or MT areas (models 2 and 3). These hypothesis–driven

models were tested for the di↵erent conditions (Homogenous, Frame and Stack condition) with SEM

(Mplus version 6.11; Muthén & Muthén, 2012), and for each condition, the model with the highest

joint probability was selected as the best-fitting model.

Since there are many projections between di↵erent visual areas, it is di�cult to predict how exactly

the information flows between the visual areas. Thus, in this case, a more explorative or data–driven
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method is likely to be beneficial. Furthermore, a data–driven method can lead to new insights on

possible connections or directions between the ROIs. Even though there is no data–driven method

for SEM, such a data–driven search process has been developed for the AG method in the language

R (R Development Core Team, 2012). To make the comparison between AG and SEM more optimal,

we used the models found with (data–driven) AG to be fitted with SEM. This resulted in hypothesis–

driven SEM models, data–driven SEM models, and data–driven AG models. AG was compared with

both hypothesis–driven and data–driven SEM models. Next, we describe the data–driven search

process in greater detail.

Since the number of possible models in the AG method is between 14 million and 1.07 billion,

it is impossible to test all models. Instead, we developed a method that can find the best-fitting

model without testing all models. In this data–driven approach, we started for each of the three

conditions with the six ROIs without any connections. Next, a single directed connection entered the

model. The fit of this connection was determined for all pairs of ROIs. The connection having the

lowest AIC remained in the model. Subsequent connections are obtained in a similar manner. This

procedure continued until adding a new connection did not lead to a lower AIC. The same procedure

was executed for a combination of directed, undirected, and bidirected connections. For SEM, the best

three models that were found with the data–driven AG procedure and contained only directed edges

were fitted. Again, for each condition, the model with the highest joint probability was selected as the

best-fitting model. This resulted in 15 models for the AG method and 15 models for the hypothesis-

and data–driven SEM method (3 conditions x 5 subjects).

Combining e↵ective and structural connectivity

In order to analyze the performance of both AG and SEM with regard to predicting structural con-

nectivity, the connection strengths of the e↵ective connectivity analyses were correlated with the

connection probabilities resulting from probabilistic tractography (probtackx in FSL), which reflect

the confidence that a connection exists between brain areas. We tested di↵erences between the di↵er-

ent methods: AG, SEM (data–driven SEM or SEM supplemented by AG), and SEMS (standard or

hypothesis–driven SEM) using normalized scores. Normalization ensured that di↵erent scales of each

method were not causing di↵erences.

Scores for each method were normalized per subject and per condition (Euclidean distance) across

the 30 connections. We used a Wald-type test for the di↵erence between two parameter vectors of

connections, which incorporates the covariance matrix of the connections, such as Hotelling’s test for

MANOVA. Under the null hypothesis of no di↵erence between the vectors of connections, this test

has a chi-square distribution (since the parameters of the connections are approximately normally

118



6.2. Results

distributed).

The covariance matrix was obtained by assuming that it is the same for all subjects and conditions,

such that the data from the di↵erent subjects and conditions could be pooled. Then, a lasso estimate

of the covariance matrix was obtained using the glasso function in R (Friedman, Hastie, & Tibshirani,

2008). The degrees of freedom were determined using the Satterthwaite approximation, as is common

in linear mixed models. We tested at a Bonferroni corrected level of 0.05/15 = 0.0033.

6.2 Results

Structural connectivity

To study structural connectivity, probabilistic tractography was performed for six ROIs. Figure 6.3

displays the positions of the ROIs of one subject projected on the MNI 152 brain, whereas ROIs

V123 and IT were defined with a probabilistic atlas; ROIs MTleft, MTright, LOleft, and LOright were

defined with functional mappers (as described in section “fMRI preprocessing and analysis”). In line

with previous research, MT was defined as the activation cluster in IT sulcus, and lateral occipital

sulcus and the LO area was defined as the activation cluster between area MT and V123 (Scholte et

al., 2008).

S 

L R 

S 

I I 

L R L R 

P 

A 

Figure 6.3: The six ROI. The yellow region is V123, the brown region is IT cortex, the red regions
are the temporal motion areas, MTleft and the MTright, and the blue regions are the lateral occipital
areas, LOleft and LOright. S, superior; I, inferior; R, right; L, left; A, anterior; ROI, regions of
interest; MT, middle temporal; IT, inferior temporal.

The pathway strength between two ROIs was derived from the number of completed paths between

two ROIs. In Figure 6.4, an example of probabilistic tractography is presented. Tracking starts in

this example from ROI MTleft. The two target ROIs presented in the figure are MTright and the

LOleft. As the figure shows, almost no tracts from the MTleft area reach the MTright area, whereas

a large number of tracts from the MTleft area reach the LOleft area.
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MTright 
LOleft 

MTleft 

Figure 6.4: An example of probabilistic tractography as displayed in standard MNI space. The red
areas indicate the MT areas, and the blue area indicates the LO area. Tracking starts in this example
from ROI MTleft. The figure shows that more tracts are going from MTleft to LOleft than to MTright.
P, posterior; R, right; L, left; A, anterior.

In line with previous findings (Kaiser & Hilgetag, 2004), connectivity between ROIs decreases

with distance between ROIs (Figure 6.5). For example, the connection probability between LOleft

and V123 is smaller than the connection probability between LOleft and MTleft. Thus, it is less

likely that there is a direct structural connection between LOleft and V123 than between LOleft and

MTleft.

E↵ective connectivity

E↵ective connectivity analysis using either SEM or AG is based on the replication of the condition-

specific trials of the motion perception task (see Figures 6.6 and 6.7). The motion perception task

comprised three conditions (Homogenous, Frame and Stack), each consisting of 40 trials. On average,

subjects responded correctly to 92.0% of the trials in the Homogenous condition (36.8 trials with a

standard deviation (SD) of 2.59), to 86.5% in the Frame condition (34.6 trials with an SD of 5), and

to 76.0% in the Stack condition (30.4 trials with an SD of 8.23).

An example of the best model for the AG and the data–driven and hypothesis–driven SEM models

for the first subject of the Homogenous condition is displayed in Figure 6.8. In this particular case,

the AG model includes both bidirected connections (displayed in dashed orange arrows) and directed
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Figure 6.5: Connection probabilities of DTI connectivity analysis as a function of pairs of ROIs with
increasing (Euclidean) distance between ROIs from left to right. Connection probabilities are averaged
over all subjects. LL, LOleft; ML, MTleft; LR, LOright; MR, MTright; V, V123. DTI, di↵usion tensor
images.

connections (displayed in green solid arrows), whereas the SEM model includes only directed connec-

tions. The bidirected connections have a strength of zero, indicating that there is a missing region

causing a correlation but no direct connection between the two ROIs.

Validating the AG method using SEM and DTI

To examine whether the AG method can predict structural connectivity equally well or even better

than the conventional SEM method, the standardized connection strengths of both the AG and SEM

models were correlated with the standardized connection probabilities from tractography (see Figure

6.9). Standardization was performed for each subject and condition separately (compare the method

of Urbach and Kutas (2002)). The standardized connection strengths have a scale from 0 to 1.

We tested di↵erences between the di↵erent methods: AG, SEM, and SEMS (hypothsis–driven) with
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Figure 6.6: The fMRI data of one trial per condition for one subject. For each condition, the 20th
trial of the first run is shown. The fMRI images are images of correctly performed trials. R, right

Figure 6.7: From left to right, the figure shows the activation pattern of, respectively, Homogenous,
Frame and Stack) condition over all runs (within a subject fixed, over subjects mixed).

the normalized scores using a Wald type that has a chi-square distribution under the null hypothesis

of no di↵erence. We tested individual and condition-specific tests at 0.05 and subsequent tests for

each individual and condition separately (15 in total) at a Bonferroni–corrected level of 0.05/15 =

0.0033. Overall tests revealed that there were no di↵erences between AG and SEM (�2 [10.71] = 8.56,

p = 0.63824). However, the di↵erence between AG and SEMS was significant (�2 [16.60] = 28.99,

p = 0.0300), and also the di↵erence between SEM and SEMS was significant (�2 [17.09] = 29.87,

p = 0.0282). This indicates that AG and SEM perform equally well, but SEMS performs worse. The
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Figure 6.8: The best-fitting models for the first subject in the Homogenous condition. Orange dotted
connections are bidirected connections and indicate that there is a missing region. Green solid con-
nections are directed connections. Besides the connections themselves, the unstandardized strengths
of the connections are also presented in the figure.

results for the individual and condition-specific tests are in Table 6.1.

Most important are the di↵erences between SEM and AG for subject 1 in the homogeneous and

stack condition. For this subject in the AG model, six bidirected edges were obtained, indicating no

direct connection. This corresponded well with the DTI values. SEM and SEMS, on the other hand,

had nonzero coe�cients for these connections, making its relation with DTI poor (see also Figure

6.8). In the stack condition, the AG model obtained five undirected connections, indicating mutual

influence (or at least no direction could be estimated reliably). This also corresponded well with DTI,

but not with SEM or SEMS. These results are in line with the results from the correlations.
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Figure 6.9: Correlations of AG, SEM, and SEMS methods with DTI values. s, subject; Hom, homoge-
nous condition; Fra, frame condition; Sta, stack condition; SEMS, SEM standard (hypothesis–driven).

6.3 Discussion

In this study, we examined AGs for studying e↵ective connectivity. AG was compared with the

conventional SEM. We compared the more explorative or data–driven AG method with both the

standard hypothesis–driven and a data–driven SEM method. For the data–driven SEM method, we

used the models found with AG, as no data–driven method is currently at hand for SEM. We used

the data–driven AG and SEM and the hypothesis–driven SEM methods to estimate the connection

strength between six ROIs of the visual cortex based on fMRI data of a motion perception task.

The achieved e↵ective connection strengths between the ROIs of all methods were correlated with

connection probabilities derived from the DTI analysis to compare the performance between AG and

SEM methods.

Results indicated that the least accurate models were the models of the hypothesis–driven SEM

method. The hypothesis– driven SEM method performed worse than both the data–driven SEM and
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Table 6.1: Significance tests of di↵erences between methods of analysis for 30 connections, where AG
is ancestral graph, SEM is structural equation modeling (data–driven through AG), and SEMS is SEM
standard (hypothsis–driven). The degrees of freedom (df) were computed for each method separately
using the Satterthwaite approximation. Starred p-values are significant at level 0.05/15 = 0.0033

AG-SEM AG-SEMS SEM-SEMS
df = 10.71 df = 16.60 df = 17.09

Subj � cond �2 p �2 p �2 p
S1-hom 35.04 0.0002⇤ 53.40 0.0000⇤ 57.69 0.0000⇤

S1-frame 0.00 1.0000 26.23 0.0620 26.24 0.0721
S1-stack 35.87 0.0001⇤ 36.84 0.0029⇤ 37.47 0.0030⇤

S2-hom 13.58 0.2378 40.57 0.0009⇤ 41.55 0.0008⇤

S2-frame 0.00 1.0000 28.60 0.0334 28.66 0.0389
S2-stack 6.01 0.8573 30.01 0.0226 36.44 0.0042
S3-hom 13.61 0.2361 17.25 0.4099 21.66 0.2022
S3-frame 0.00 1.0000 17.00 0.4266 17.00 0.4602
S3-stack 5.52 0.8910 28.99 0.0300 28.05 0.0457
S4-hom 0.00 1.0000 29.06 0.0295 29.06 0.0350
S4-frame 0.01 1.0000 21.90 0.1709 21.73 0.1995
S4-stack 0.00 1.0000 31.51 0.0148 31.56 0.0176
S5-hom 0.84 1.0000 23.74 0.1134 23.81 0.1276
S5-frame 9.84 0.5187 26.42 0.0590 23.08 0.1500
S5-stack 8.03 0.6872 23.30 0.1255 24.02 0.1217

the AG method. This is probably due to the complicated structure of projections between di↵erent

visual areas (Felleman & van Essen, 1991), going not only from lower-tier to higher-tier areas but

also vice versa (Lamme & Roelfsema, 2000). At this moment, too little is known about this exact

information flow between the di↵erent regions, which makes it logical that an explorative model has

a better fit than a theory-based model.

A comparison of the data–driven SEM and AG methods showed that, in general, the AG and the

SEM method predicted structural connectivity equally well. We performed the correlational analyses

for each subject and condition separately. Only in the Homogenous and Stack condition of the first

subject, the AG method predicted structural connectivity significantly better than the SEM method.

In the Homogenous condition and the Stack condition of this subject, the AG models contained a

lot of bidirected or undirected connections, respectively. This seems to indicate that whenever there

are possibly missing regions, as indicated by the bidirected connections, the AG method outperforms

SEM.

Furthermore, it is beneficial for SEM to use models that are based on a selection from AG. Using

AG to compose models for SEM has led to models that usually would not be found with SEM.

Thus, AG can lead to more informative and accurate models of brain networks in future connectivity

research.
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6.4 Conclusion

This study showed that AG is a fruitful method to study e↵ective connectivity. In contrast to con-

ventional methods to study e↵ective connectivity, such as SEM, AG can detect, besides directed

connections, whether there are undirected connections, indicating mutual influence (or at least no

direction could be estimated reliably) and bidirected connections, indicating that there is a missing

region causing a correlation but no direct connection between the two ROIs. In particular, the ability

to detect missing regions is a unique feature of AG that leads to network models with fewer spurious

connections.
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7 Heating up the measurement debate: What

psychologists can learn from the history of physics

Current theories of psychological measurement are largely disconnected from discussions of measure-

ment in the natural sciences. There are extensive debates on measurement in both domains, but

attempts to bring them together are rare.1 In most textbooks, manuals, or monographs on psycho-

logical measurement (e.g., AERA, APA, & NCME, 2014; Borsboom, 2005; Kline, 2000; McDonald,

1999), physical measurement appears (if at all) only in the form of simplified standard examples, such

as weight and length, which are not analyzed in any serious detail, and are often used just as contrast

cases to psychological measurement.

Indeed, there are substantial di↵erences between psychological and physical measurement: human

participants are capable of learning and thus may react very di↵erently at di↵erent time points,

psychological measurements usually are sum scores made up of item responses, the results may have

social and ethical implications, there is a di↵erence between intra- and inter-individual measurements,

and so on (Gigerenzer, 1987; McDonald, 1999; Messick, 1989). However, our approach in this paper is

to focus on the similarities, and to look for aspects and episodes in the history of physical measurement

that are relevant for psychological measurement, more specifically for the debate on validity.

Validity is arguably the most fundamental and controversial issue in psychological measurement

(Lissitz, 2009). In the latest edition of the Standards for Educational and Psychological Testing,

validity is the first topic discussed, and is characterized as the most fundamental consideration in

developing tests and evaluating tests (AERA et al., 2014, p. 11). According to the classic definition,

validity refers to the extent to which the test or instrument measures what it is intended to measure

(Kline, 2000, p. 17; McDonald, 1999, p. 197), but in contemporary validity literature, accounts of

validity di↵er greatly, and there is no agreement even on how validity should be defined (see Newton

and Shaw (2013) for a state-of-the-art overview).

Some of the most prominent approaches to validity are Messick’s (1989) unified treatment of valid-

ity (and its various refinements), where the focus is on the adequacy of inferences that psychologists

make based on test scores; Kane’s (2001, 2006, 2013) argument- based approach, where validation

1Some notable exceptions are Humphry (2011, 2013), Michell (1999), Rasch (1980).
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consists in giving evidence-backed arguments for interpretations of test scores; and the causal ap-

proach, where the idea is that in a valid measurement the thing to be measured should cause the

measurement outcome (Borsboom, 2005; Borsboom, Mellenbergh, & van Heerden, 2004; Markus &

Borsboom, 2013).2 In this article, we take as the starting point the core idea that validity concerns the

extent to which the instrument or test measures what it is intended to measure, but our conclusions

have relevance independently of how validity is defined.3

Natural scientists do not use the same terminology as psychologists or psychometricians, and

do not talk of the validity of measurements, but this does not mean that issues related to validity

do not arise in physics – as we will show in this paper, in the history of physics it has often been

unclear whether the instruments are measuring what they are intended to measure. In this article,

we will focus on a real and detailed example (temperature) from the history of science, and establish

connections and parallels between physical and psychological measurement.4 More specifically, our

novel contribution is to show that looking at the history of measurement in physics can lead to new

insights and viewpoints for the validity debate in psychology.

We have chosen temperature as our case study because temperature measurement has a long and

rich history that is well documented, and has been analyzed in detail by historians and philosophers of

science (e.g., Chang, 2004; Sherry, 2011). Furthermore, temperature is a representative example of a

physical attribute that can be measured in various ways, and that is easily understandable without any

background in physics. As we will show, there are surprising parallels between temperature measure-

ment in the first half of the 19th century and the current situation in psychological research practice.

In that period, the focus was on making temperature measurements increasingly precise, consistent,

and mutually compatible, without engaging in theoretical work on the nature of temperature. In a

similar way, current practice in psychological measurement focuses mainly on criteria such as relia-

bility, generalizability, and correlation with other measures, and far less on theories concerning the

psychological attributes measured, or the causal processes underlying the measurements (Borsboom,

2005; Hubley, Zhu, Sasaki, & Gadermann, 2013; Markus & Borsboom, 2013).5

As we will show, in temperature measurement this atheoretical approach was insu�cient, and

substantial scientific progress was made only when the measurements were linked to theory. At a

very general level, this supports the views in psychology that emphasize the crucial importance of

2Interestingly, Hood (2009) argues that the causal approach is in fact compatible with Messick’s (1989) approach to
validity, and Newton and Shaw (2013) argue that Kane’s argument-based account is compatible with the causal account.
Thus, it may be that the di↵erent approaches are compatible and focus on di↵erent aspects of validity.

3If validity is defined in a di↵erent sense, so that our arguments do not, strictly speaking, concern validity, they are
still relevant for psychological measurement in general.

4In this article, we understand psychological measurement to cover all kinds of measurements done in the various
fields of psychology, ranging from intelligence tests to measurements of the capacity of short–term memory.

5It should be noted that this concerns research and measurement practice in psychology. Theoretically oriented
psychologists have discussed the importance of theory throughout the 20th century and up to this day.
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theory for measurement and validity. However, our main point is to analyze three more concrete

conclusions that can be drawn from the physical case, and that are relevant for the validity debate

in psychology. First of all, studying the causal mechanisms underlying the measurements can be

crucial for evaluating whether the measurements are valid. Secondly, psychologists would benefit

from focusing more on the robustness of measurements. Robustness refers here to the idea that

if there are several independent ways of measuring something, this increases our confidence in the

measurements.6 Finally, we argue that it is possible to make good science based on (relatively) bad

measurements, and that the explanatory success of science can contribute to justifying the validity of

measurements.

As an important terminological remark, the expressions “mechanism” and “causal” in this paper

should be understood very broadly. By “mechanism”, we mean roughly a set of components that are

organized together to perform a function (Bechtel, 2008). This covers not only physical mechanisms,

but also cognitive and biological mechanisms that need not be deterministic. Similarly, “causal” and

“causation” should be understood here in terms of di↵erence-making and potential manipulation and

control (Woodward, 2003), and not in terms of exclusively deterministic or physical causation. These

broad conceptions of causation and mechanism are compatible with the possibility that the mind or

the brain is fundamentally probabilistic (cf. Gigerenzer, 1987).

The structure of this article is as follows. In the next section, we will briefly sketch the relevant

cases from the history of temperature measurement. In the following section, we will relate this to the

current situation in psychological measurement, and discuss in detail three insights from the history of

temperature measurement that are relevant for the validity debate in psychology. In the final section,

we will discuss open issues and briefly return to the general topic of measurement in psychology and

physics.

7.1 A brief history of temperature measurement

In this section, we will briefly go through some key episodes in the history of temperature measurement.

The main focus will be on the atheoretical approach to measurement that reached its high point in

the work of Henri Victor Regnault. As we will argue, this approach resulted in very precise and

comparable temperature measurements, but fell short for various reasons. Most importantly, it did

not result in an increased understanding of what temperature is, and it did not help in assessing what

happens in new circumstances when the validity of measurements is unclear. Furthermore, we point

6The term “robustness” is ambiguous, and can refer to di↵erent things in di↵erent contexts. For example, Markus
and Borsboom (2013) use it to characterize the stability of causal relationships, and in statistics it refers to measures
that are resistant to deviations and errors. We use the term in order to make a connection to the long tradition in
philosophy of science (going back at least to Wimsatt, 1981), where robustness has been discussed in the same sense as
in this paper.
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out that the high degree of precision, consistency, and comparability that Regnault was aiming at is

not even necessary for making valid measurements, and that theoretical progress can provide indirect

evidence for the validity of measurements.

Let us start with the early days of temperature measurement (see Barnett, 1956 for historical

details; the following overview is mostly based on Chang, 2004, pp. 39–56). In the 16th century,

researchers such as Galileo started making attempts to develop instruments (thermoscopes) to be

able to measure phenomena of heat and cold. Based on subjective sensations of warm and cold, it

was discovered early on that liquids (and air) tend to expand when they are heated. Thus, a liquid

in a closed glass tube (or any closed vessel) will expand as it gets warmer, and contract as it gets

colder. This principle was the starting point for measuring heat and cold. What this means is that the

measurement of temperature was not originally based on physical theory, but started from subjective

experiences and a simple empirical regularity.

As Chang (2004, pp. 51–52, 159) has pointed out, the improvement of the precision and con-

sistency of temperature measurements proceeded iteratively without much influence from theoretical

developments. The simple thermoscopes described in the previous paragraph made it possible to find

phenomena that are relatively constant in temperature (such as boiling), and these could be used

as fixed points for measurements. Based on this, it was possible to divide the interval between two

fixed points into units, resulting in a numerical temperature scale, which allowed for more precise

measurements. These numerical thermometers could then be improved in terms of various empirical

criteria: they could be made more precise in the sense that they produce more fine-grained readings,

more consistent (or reliable) in the sense that they produce the same result in the same circumstances,

more comparable in the sense that any two particular thermometers of the same type function in the

same way, and more robust in the sense that di↵erent types of thermometers give the same results. In

this way, measurements could be improved to a high degree, independently of theoretical developments

(see also Choppin, 1985).

The culmination of this approach of improving thermometers based on empirical criteria was the

work of the French scientist Henri Victor Regnault (1810-1878). Regnault shunned all theoretical

speculation about the nature of temperature and emphasized the importance of rigorous testing with

a minimal amount of assumptions (Barnett, 1956, pp. 333–341; Chang, 2004, pp. 74–84). Thus,

Regnault’s approach was anti-theoretical to the extreme. He collected a vast amount of data based

on meticulously precise measurements, and used di↵erent constructions of instruments to make sure

the results were robust (Chang, 2004, p. 175). In the end, Regnault successfully constructed highly

precise and comparable gas thermometers, the measurements of which di↵ered from each other only

by less than 0.1% (i.e., if one thermometer recorded a temperature of 70�C, the measurements of the

same conditions by the other thermometers fell within the range 69.93–70.07�C; Chang, 2004, p. 81).
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However, even though Regnault was able to make such extremely precise and consistent mea-

surements, his approach had some fundamental shortcomings. First of all, although an atheoretical

approach can guarantee that measurements are consistent and comparable in controlled conditions,

such an approach falls short when the conditions are new or unknown. For example, in the 18th

century, the best thermometers available were mercury thermometers (invented by Fahrenheit). They

had been extensively tested and used only in conditions that naturally occur or that are easy to pro-

duce in a laboratory, but it was unclear whether they would continue to provide valid measurements

in other circumstances, such as extreme heat or cold. In fact, they did not, as is nicely illustrated by

the following story (described in Chang, 2004, pp. 105–118).7

In 1733, the Russian scientist Johann Georg Gmelin set out to explore the eastern stretches of

Siberia, and on his journey experienced freezing conditions of unexpected harshness. The mercury

thermometer that Gmelin was using indicated a temperature of -120�F (-84.4�C). Gmelin was happy

to accept this reading as roughly accurate, as indeed it had been very cold, but others were skeptical.

Nothing even close to that temperature had ever been recorded on earth. It seemed more likely that

the thermometer was no longer providing valid measurements of temperature. This initiated a heated

scientific debate, and a new research project: although many of the properties of mercury were well

understood, its freezing point was unknown, which various scientists now set out to discover. Only

decades later it was established that mercury freezes around -40�C. Like most substances, mercury

becomes much denser when frozen, resulting in lower levels of mercury in the thermometer. Thus,

the mercury of Gmelins thermometer had frozen, and the temperature had been far less severe than

-84.4�C.

The crucial point here is that, in contrast to what Gmelin thought, the comparability and con-

sistency that had been established for mercury thermometers provided no justification for believing

in the results, because the conditions were novel and untested. In a similar way, the precision, con-

sistency, and comparability of Regnault’s thermometers was only established for limited conditions

and a limited part of the temperature scale. Furthermore, it was not possible to resolve the issue

of whether the measurements continued to be reliable based on only empirical criteria. Any other

mercury thermometer would have also frozen in conditions of extreme cold. In order to solve the

problem, scientists had to study how the measurement instrument actually works, that is, the causal

mechanism that results in the measurement outcome, and this in turn required theoretical advances

(i.e., discovering that a substance like mercury can freeze, and that it will contract when frozen).

A second limitation of the atheoretical approach of Regnault was that this approach did not result

in increased understanding of what temperature is, or in new connections with other areas of physics.

7This episode took place before Regnaults time, but we describe it here because it gives a vivid illustration of the
limits of focusing just on precision and reliability, and thus also the limits of Regnaults approach.
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One concrete implication of this was that the temperature scale itself remained just as arbitrary as it

had been before Regnaults e↵orts: The fixed points of the scale(s) were conventions based on practical

considerations, and there was no plausible theoretical definition for what it means for temperature to

change by one degree. Only after a connection was made to theory did it become possible to formulate

an objective definition for what a change of one degree of temperature means, and to calculate the

absolute zero (Chang, 2004, pp. 159-197). This was achieved by Thompson (also known as Lord

Kelvin, 1824-1907), who connected temperature to the thermodynamic notions of work and heat.

This also allowed making temperature measurements more robust: while Regnaults measurements

were all in the end based on simple gas laws, the connection to thermodynamics made it possible to

derive temperature values also from thermodynamic equations. Eventually, other theoretical advances

also resulted in new kinds of instruments for measuring temperature, such as resistance thermometers,

which are based on the principle that the electrical resistance of some materials increases with rising

temperature.

As a third point, in order to achieve valid measurements and scientific progress, the kind of high

degree of precision, consistency, and comparability that the atheoretical approach aims at is not

necessary – to put it simply, it is possible to do good science based on relatively bad measurements.

To illustrate this, we can again move back in the history of temperature measurement, and consider

an episode that took place before Regnault’s time: Joseph Black’s (1728-1799) discovery of the theory

of latent heat (the heat that a substance can absorb or release without changing in temperature;

Sherry, 2011). Black’s theory amounted to a great scientific advance that marked the beginning of

the science of thermodynamics. Interestingly, the measurement instruments at Black’s disposal were

mercury thermometers that by Regnault’s standards (or contemporary standards) would not have

counted as very consistent, precise, or mutually compatible. However, this did not stop Black from

theorizing about heat and temperature and testing his hypotheses with temperature measurements.

Even with these imperfect measurements, Black was able to quantify the notion of latent heat, and

with his theory of latent heat he could provide novel explanations to a broad range of phenomena,

including the melting of ice and freezing of water.

This case also illustrates another related point: theoretical progress can contribute to the validity

of measurements retroactively, or in hindsight. The theory of latent heat was built on the assumption

that mercury thermometers provide valid (although imprecise) measurements of temperature. The

predictions and explanations based on the theory of latent heat were extremely successful. Thus,

Black and his contemporaries had good reasons to believe that the original hypothesis concerning

the validity of the measurements was correct (Sherry, 2011). Of course, it was in principle possible

that the theory happened to be correct in spite of the temperature measurements being completely

invalid, but this would have been almost miraculous: the far more likely explanation was that the
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measurements were in fact valid, at least in the sense that they were roughly measuring some real

quantity (Sherry, 2011). Thus, theoretical progress and success can contribute to indirectly justifying

the validity of measurements.

7.2 Lessons for measurement in psychology

The most general moral that we can draw from the above is that theory is crucially important for

measurement and validity. While an atheoretical approach, where the aim is to make measurements

better on purely empirical standards (such as reliability and invariance), will result in measurements

that are consistent and comparable under a limited range of conditions (corresponding to Regnaults

achievements), it will not guarantee the validity of measurements or lead to significant scientific

progress.

In many ways, the situation in psychological research practice resembles the situation of tempera-

ture measurement in the late 18th and early 19th centuries: the focus is on criteria such as reliability

and invariance, and on correlational and purely empirical studies, at the expense of theory-building

or theoretical speculation. The standard approach in psychometric modeling is to find statistical

models that fit the data, which can be done independently of theoretical assumptions concerning the

thing that is measured (Markus & Borsboom, 2013, p. 43). Assessments of validity in practice most

often amount to evaluating the internal structure of the test, or correlating the results with external

variables and seeing whether the correlations are in the right direction (Borsboom, Cramer, Kievit,

Scholten, & Franić, 2009; Borsboom et al., 2004; Hubley et al., 2013). Furthermore, just like the tem-

perature scales in Regnaults time, psychological scales and units lack any clear theoretical foundation,

and there is no clear understanding of the nature of the attributes measured (Humphry, 2011).

The temperature story illustrates the limits of such an atheoretical approach: it will result in

measurements that are consistent and precise under a limited range of conditions (corresponding to

Regnaults achievements), but it will not guarantee the validity of measurements or lead to significant

scientific progress. For advances on these fronts, theory is required.

This point as such is not novel – the importance of theory has been widely discussed in the debates

on validity in psychology, starting from the classic paper by Cronbach and Meehl (1955) and going

on up to this day (e.g., Borsboom, 2005; Embretson, 1983; Embretson & Gorin, 2001; Kane, 2013;

Markus & Borsboom, 2013; Messick, 1989; Newton & Shaw, 2013). Here we have provided new

evidence for the perils of neglecting theory. Furthermore, in the validity literature, the views on the

role and importance of theory for establishing or assessing validity vary greatly, and the considerations

in the previous section clearly support accounts that place theory at the very core of assessing validity

(e.g., Borsboom et al., 2004; Embretson, 1983, 1998; Embretson & Gorin, 2001).
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However, our main point in this section is to show how the three more specific issues we picked

up from the history of temperature measurement are relevant for the validity debate. Our first

main point in the previous section was that understanding the causal mechanism underlying the

measurement instrument is essential for assessing validity. This was evident in the story of Gmelin’s

frozen thermometer: in order to determine whether Gmelin’s measurements were valid measurements

of temperature, scientists had to study what exactly happens in the mechanism of the thermometer

in extreme temperatures. Thus, theoretical understanding of the causal mechanism of measurement

seems to be crucial for assessing the validity of measurements, especially in novel circumstances. More

generally, in the philosophical literature on measurement, the focus nowadays is on understanding

and modeling the measurement process and the (causal) functioning of the measurement instrument

(Chang, 2004; Frigerio, Giordani, & Mari, 2010; Kyburg, 1992; Tal, 2013; Trout, 1998).

This suggests that understanding the causal mechanisms underlying measurements should be cru-

cial also for assessing psychological validity, in line with the causal account of validity defended by

Borsboom and colleagues (Borsboom, 2005; Borsboom, Cramer, et al., 2009; Borsboom et al., 2004;

Markus & Borsboom, 2013). However, we do not agree with these authors that validity only concerns

the question of whether the attribute to be measured actually exists and causes the variations in the

measurement outcomes (e.g., Borsboom et al., 2004, p. 106). As will become clear below, we believe

that there are also many other important aspects to validity.

One obvious problem that arises when the approach of studying the causal mechanisms of mea-

surement is applied to psychology is whether we can actually study the relevant mechanisms. The

most prominent attempt at this is found in Susan Embretson’s groundbreaking work. According to

Embretson’s (1983, 1998, 2004) process-oriented account of validity, traditional assessments of con-

struct validity (i.e., comparing the test scores to relevant external variables) need to be supplemented

with studies of the cognitive processes and strategies that participants use to respond to test items,

based on state-of-the-art cognitive psychology. When this approach is applied in practice, cognitive

theory influences both test construction and the measurement models (such as item response theory,

IRT, models): the items selected for the test are based on cognitive theory, and the models include

parameters representing the cognitive demands of the item (Embretson, 1983, 2004; Tatsuoka, 1987,

1990).8 For example, a test for assessing abstract reasoning was created based on processing the-

ory, and the IRT model was combined with a cognitive model, including parameters such as working

memory load and perceptual processing (Embretson, 1998).

However, as important as these studies are, including cognitive parameters in measurement models

is still very far from describing the causal mechanisms underlying the measurement process. Ideally,

8A similar approach to incorporating cognitive theory into test development is Mislevy’s Evidence Centered Design
(ECD; Mislevy, Steinberg, & Almond, 2002).
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there should be models that describe the steps in the causal process that start with the attribute

intended to measure and end with the measurement outcome. It may be that the reason why this is

not generally attempted, or not even seen as a goal, is that the causal mechanisms in psychology are

thought to be so complex that figuring out the causally relevant components is practically impossible

(Trendler, 2009). We acknowledge that the challenges may seem daunting at present, but do not

believe that the situation is hopeless with regard to the future: great progress has been made in

recent decades in discovering mental mechanisms (Bechtel, 2008), an issue to which we return below.

The second important insight for validity (and psychological measurement in general) that we draw

from the physical case is the principle of robustness. This is a method or principle that pervades all of

science and has also many other names: mutual grounding, mutual compatibility, overdetermination,

triangulation, diverse testing, and so on (Chang, 1995, 2004; Eronen, 2012; Hacking, 1983; Tal, 2011;

Trout, 1998; Wimsatt, 1981, 2007). The basic idea is that if there are several independent ways of

achieving the same result, this increases our confidence in the result. This can also be expressed as the

following mathematical principle: if there are several (independent) ways of measuring something, the

probability that all of them happen to go wrong is a product of the individual probabilities of going

wrong, and this product becomes increasingly tiny as more and more independent ways are added

(Wimsatt, 1981).

The idea of independence is crucial for robustness. There is no uncontroversial or widely accepted

account of the exact nature of the required independence, but certain key features can be spelled

out (Nederbragt, 2012; Stegenga, 2012; Stroebe & Strack, 2014; Wimsatt, 2007). First of all, it is

obvious that statistical independence is not what is required: di↵erent ways of measuring temperature

will be statistically correlated, even when they are in other important respects independent (e.g., two

thermometers based on di↵erent physical principles, such as a mercury thermometer and a radiation

thermometer). The idea is rather that the di↵erent ways of measuring should partly rely on di↵erent

theoretical assumptions, di↵erent physical processes, or di↵erent experimental setups. What is neces-

sary is that any problematic or unconfirmed assumptions should not be shared by the di↵erent ways

(Stegenga, 2012). Di↵erent approaches or ways of measuring are fully independent only if they rely

on di↵erent assumptions and di↵erent parts of theory (such as mercury thermometers and radiation

thermometers). It is clear that independence is a matter of degree, and not a none-or-all property: two

di↵erent mercury thermometers are less independent from each other than a mercury thermometer

and a radiation thermometer.

Robustness itself is also a matter of degree, corresponding to the number and independence of the

di↵erent ways of measuring. Once a high degree of robustness is reached, we can be confident in the

measurements, and conversely, if measurements are not robust or robust to a low degree, we should

approach them with healthy skepticism. This principle can be applied to measurements, attributes,
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properties, and entities, but it is important to keep in mind that it is a fallible epistemic principle,

and not a guarantee of truth or reality (see Eronen, 2012 and Wimsatt, 2007 for more).

An increase in the degree of robustness is evident in the history of temperature measurement, as

outlined in the previous section. If several di↵erent thermometers give the same reading, it is more

likely that the reading is correct than when only one thermometer is used. However, applying multiple

instruments based on the same theoretical principle leads to a low degree of robustness, because their

independence from each other is very limited. If the theory on which the instruments are based turns

out to be false, the fact that multiple instruments were used becomes irrelevant.9 Also, the robustness

of Regnaults measurements was limited, because all the thermometers he used were implicitly based

on the same gas laws, and no further connection to theory was made. A higher degree of robustness

was only reached through theoretical developments, which led eventually to new types of instruments

for measuring temperature, relying on di↵erent areas of physics, such as radiation thermometers and

resistance thermometers.

The idea of robustness (although di↵erent terms are used) also has a tradition in psychomet-

rics, going all the way back to the classic article by Cronbach and Meehl (1955) and the multitrait-

multimethod matrix approach of D. T. Campbell and Fiske (1959). In contemporary validity theory,

the idea comes up in the context of convergent validity, which refers to evidence from other measures

that are intended to assess the same or a similar attribute (AERA et al., 2014, pp. 16-17). However, in

practice, assessing convergent validity usually amounts to calculating correlation coe�cients between

measures that are expected to be related, possibly supplemented with factor analysis or principal com-

ponent analysis (see, e.g., Clapham, 2004; Duckworth & Kern, 2011). No special attention is paid to

the independence of measures, or to deriving the result from theory. Thus, convergent validity can be

seen as a weak form of robustness. Furthermore, in psychometrics convergent validity is usually briefly

mentioned as one possible source of evidence for validity, while in the natural sciences robustness is

central to the validity of measurements (Chang, 1995, 2004; Wimsatt, 2007).

It is clear that the degree of robustness of the measures and constructs in contemporary psychol-

ogy varies greatly. For example, it could be argued that intelligence measurements (IQ scores) are

robust to a low degree, because although the results of di↵erent intelligence tests are highly corre-

lated, intelligence scores are not based on any widely accepted theory, and the independence of the

various tests can be questioned (van der Maas et al., 2006). An example of a domain where psycho-

9A classic example of this is the bacterial mesosome (Culp, 1994; Wimsatt, 2007, p. 381, note 3). This entity appeared
in various experiments studying bacteria and was initially thought to be a new kind of cellular organelle. Because
independent research groups using di↵erent experimental setups could detect the bacterial mesosomes, the results that
indicated their existence seemed to be robust. However, it later turned out that all of the di↵erent experimental setups
were using the same fixation methods for preparing the samples, and the bacterial mesosomes were merely artifacts of the
preparation methods. Thus, the various experimental setups were – in a crucially important respect – not independent
from each other, and the robustness of the results was illusory.
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logical measurements have a higher degree of robustness would be short-term memory. The capacity

of short-term memory can be measured in a broad range of di↵erent types of (independent) exper-

imental setups: imposing an information overload, preventing long-term memory access, examining

performance discontinuities in memory tasks, mathematically modeling memory performance, and so

on (Cowan, 2001; Jonides et al., 2008). In any case, we believe that the debate on validity would

benefit from a closer analysis of robustness, and more specifically the independence of measurements.

The third main point for validity that we draw from the history of physics can be summarized

as follows: relatively bad measurements can result in good science, and scientific progress can justify

the validity of measurements in hindsight. This was discussed in the last part of the previous section.

Instead of waiting for better measurement techniques, theoretically oriented scientists such as Black

made the working hypothesis that the imperfect measurement instruments (mercury thermometers)

at their disposal were consistent and valid enough, and formulated theories and explanations based

on that working hypothesis (see also Choppin, 1985). Those theories turned out to be very successful.

This success gave the scientists more reason and justification for believing that the working hypothesis

was true, and that the measurements were valid in the sense that a real and scientifically important

quantity was being measured.10 Note that this does not involve any vicious circularity in the sense

that measurements are validated by theory, and the theory is validated by measurements. The pattern

is rather this: what increases confidence in the validity of measurements is the success of the theories

that are based on them, and what justifies the success of those theories is their explanatory and

predictive power. Testing the latter need not involve the same types of measurements whose validity

is in question.

We certainly do not want to claim that this is the only way of establishing the validity of mea-

surements. The point is rather that this is one way of contributing to validity arguments or justifying

validity claims. To the best of our knowledge, this has not been explicitly discussed in current validity

literature (although interestingly Coleman, 1964, pp. 70-73 makes a similar point in the context of

measurement in sociology). Consequences are generally regarded as one source of evidence for validity,

but this refers to the consequences of test use in practice, and not consequences for theory and science

in general (see, e.g., Messick, 1989; Newton & Shaw, 2013).

This point also has implications for Joel Michell’s arguments against psychological measurement.

Michell (1997, 1999, 2000, 2013) has argued that psychologists are treating the attributes they are

measuring as quantitative, without having even attempted to show that they fulfil the requirements

10There are also numerous cases in the history of science where the working hypothesis was not confirmed, and the
measurements turned out to have been invalid. Consider phlogiston: scientists in the 17th and the 18th centuries assumed
that they were measuring quantities of phlogiston in combustible things. However, explanations and predictions based on
the phlogiston theory were fundamentally problematic, and eventually the theory was replaced by oxygen-based theories
of combustion. Thus, the validity of phlogiston measurements was disconfirmed by later developments in science.
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for being quantitative in structure (such as additivity, i.e., that there is a meaningful way of adding

up quantities of the attribute). Thus, psychological measurement currently lacks any foundation, and

as long as it has not been shown that psychological attributes are in fact quantitative, psychometrics

is a pathological science (see also Trendler, 2009).

However, as Sherry (2011, pp. 515–517) has pointed out, the history of thermometry suggests

that this shortcoming may be less devastating (or “pathological”) for psychology than Michell thinks.

Black and his contemporaries did not have any conclusive arguments for the quantitative nature of

temperature either, and they had no conception of the actual nature of heat and temperature (which

were only discovered in the late 19th century; see also Choppin, 1985). Instead, they made the

working hypothesis that temperature is measurable and that mercury thermometers provide roughly

valid measurements of it, and built their theories based on this assumption. Considering the success

of those theories, in retrospect it is clear that making that hypothesis was a crucially important and

justified move. Thus, it is plausible that psychologists can also make a similar working hypothesis,

which will then be confirmed or disconfirmed by later developments in science (see also Humphry,

2011).

Michell could respond that while this strategy works in physics, there is no reason to expect it

to work in psychology. In Black’s case, the theories based on temperature measurements were very

successful, and were soon broadly accepted, but psychology has so far failed to produce theories of

significant scope or explanatory power, and current psychological theories are not rich and detailed

enough to provide serious tests for the hypothesis that psychological measurements are valid (see, e.g.,

Michell, 2004). Thus, perhaps we cannot expect in psychology the kind of progress that led to the

vindication of temperature measurements.

In our view, this is a question that can only be resolved by the eventual development and progress

of psychology as a science, and in this regard we are far less skeptical than Michell. At the moment, no

overarching theories of the kind developed by Black, Thomson, or Maxwell in the case of temperature

are foreseeable in psychology, but this should not be seen as discouraging: theories in psychology and

the life sciences in general tend to be more local than in physics (Bechtel, 2008; Bechtel & Richardson,

1993; Kyngdon, 2013). For example, there is no (and likely never will be) single overarching theory

of biology, but a broad range of theories concerning natural selection, gene expression, development,

ecology, and so on. In a similar way, instead of one unified theory of human psychology, there will be

increasingly precise theories or models of perception, language learning, problem solving, and so on.

In fact, it may be that theoretical development in psychology is hampered by the implicit assump-

tion that theories are simply better the more general they are. For example, based on the mirror

neuron mechanism, psychologists have proposed far-reaching theories of social cognition (Gallese,

Rochat, Cossu, & Sinigaglia, 2009). It may be better to focus first on local mechanisms and their
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specific and limited roles and functions, for example the role of mirror neurons in perception of goal-

directed behavior (Spaulding, 2013), and to make these local theories and explanations as elaborate

and plausible as possible.

Indeed, in many areas of psychological measurement, such as memory, we already find relatively

well-developed local theories, for example in the case of short-term memory mentioned above. There

are theories concerning the interplay of short-term memory, long-term memory, focus of attention,

and perception (Cowan, 2001; Jonides et al., 2008). These theories predict and explain what happens,

for example, when participants are asked to report the elements in a visual array that is presented in

a flash: very roughly, their focus of attention has a limited capacity, and thus participants only report

the elements they attended to (Cowan, 2001). Other examples of promising and local psychological

theories are provided by Kyngdon (2013).

7.3 Concluding remarks

In this article, we have discussed the history of the measurement of temperature and its methodological

relevance for psychology, particularly the debate on validity. We started by going through some

important episodes in the history of temperature measurement, and pointed out that there is a parallel

between the hyper-empirical approach of Regnault in the 19th century and the atheoretical attitude

that is still common in psychological research practice. We also argued that this approach was in the

end insu�cient in temperature measurement, and that it will likely be insu�cient in psychology as

well. In short, it does not lead to increased understanding of the phenomena or attributes measured

and does not lead to important scientific advances, and the high reliability and consistency that it

strives for is not even necessary for valid measurements.

We then looked at more concrete ways in which the validity of psychological measurements could be

improved. Interestingly, all of these three ways are closely related to theory. Our first point was that

assessing measurements in novel situations requires theoretical understanding of the causal mechanism

underlying the measurement process. In the case of robustness, determining the degree of robustness

depends on theories and models about the experimental setups, measuring instruments, and the things

being measured. Our last point explicitly concerned theories: the validity of measurements can be

indirectly justified or established based on the development of successful theories that build on the

measurements. Thus, this article can be seen as continuing the long tradition of emphasizing the

importance of theory for measurement and validity.

Although we have argued that there are parallels between physical and psychological measurement,

we do not want to deny that there are also substantial di↵erences, as we acknowledged in the introduc-

tion. However, we believe that the di↵erences are a matter of degree, and not as categorical as is often
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supposed. For example, although properties such as length or weight can be measured in a relatively

direct and straightforward way, the same does not apply to phenomena such as the weak nuclear

force or the background radiation of the universe. Such phenomena (which includes most phenom-

ena studied in contemporary physics) can be measured only indirectly, and have no straightforward

operationalizations (Kyburg, 1984). To return to the example of temperature, it is worth mentioning

that even nowadays temperature measurement faces considerable practical and conceptual problems

and is far from trivial. For example, a monograph on temperature measurement by Quinn (1990) uses

hundreds of pages to discuss various issues and complications in measuring temperature.

In our view, the main di↵erences between physical attributes and psychological attributes are that

(a) most psychological attributes have not been embedded into any successful and widely accepted

theory (see also Sijtsma, 2012), and relatedly, (b) there is no solid theoretical foundation for the

units, ratios, and scales for psychological attributes (see also Humphry, 2011, 2013). However, as we

have shown, the situation in early temperature measurement was not much better. Thus, we do not

think that these di↵erences rule out the possibility of measuring psychological attributes; rather, they

emphasize the importance of developing better psychological theories.

In sum, we believe that the existing discussions of this topic have focused too little on the similar-

ities between physical and psychological measurement, and we do not think that the di↵erences are

so fundamental that they prevent drawing interesting parallels and looking to physical sciences for

insights. More generally, we believe that the methodology and history of physical measurement can be

valuable to psychologists, as we hope to have shown in this paper in the context of the validity debate.

We do not claim that psychology will necessarily develop in the same way as physics has developed,

but rather that psychologists should not think that the history and theory of measurement in physics

and other natural sciences is irrelevant to psychology. In conclusion, we hope that this article can

contribute to opening new pathways for studying psychological measurement.
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Now that we have discussed di↵erent approaches to networks and measurement in psychology, we

will take a bird’s-eye view on this topic in this final chapter. First, we will consider whether the

grounds for using a network approach in psychopathology are really di↵erent from the grounds for

using networks in other fields. As we have seen, in psychopathology, emotion and personality research

the network approach is motivated by the need for an alternative to the latent variable model, but as

will become clear, this issue is not as transparent as it may seem at first. Second, we will scrutinize

the fundament on which most networks in this thesis are built upon: the VAR model. Finally, this

critical examination will lead back to the original title question: Dynamical networks in psychology –

more than a pretty picture?

8.1 Networks versus latent variable models

Network analyses are popular throughout all scientific disciplines, including psychology. However,

as has become clear in this thesis, only recently the network approach has also found its way to

psychopathology, emotion and personality research. What is unique to this recent network approach

is the theoretical rationale for the need of networks in this field of research. In Chapters 1 to 4,

following the reasoning of Borsboom, Cramer and colleagues, contrasting network models to latent

variable model has been the main motivation for the network approach. This motivation is nicely

summarized by Cramer and colleagues as follows: “The pivotal problem of comorbidity research lies

in the psychometric foundation it rests on, that is, latent variable theory, in which a mental disorder

is viewed as a latent variable that causes a constellation of symptoms. . . .We argue that such a latent

variable perspective encounters serious problems in the study of comorbidity, and o↵er a radically

di↵erent conceptualization in terms of a network approach . . . ” (Cramer et al., 2010, p.137).

This criticism has been taken to heart, and especially in clinical research, an exponential increase in

network research is apparent. Networks of depressive disorder (Cramer, Borsboom, et al., 2012; Fried

et al., 2014; Fried & Nesse, 2014; Fried et al., 2015; Robinaugh et al., 2014), autism spectrum disorder

(Anderson, 2015; Ruzzano et al., 2015), post traumatic stress disorder (McNally, 2012; McNally et

al., 2015), personality traits (Cramer, van der Sluis, et al., 2012a) and diagnostic assessment tools

141



8. Discussion

for mental disorders (e.g, BDI, DSM and ICD manual; Boschloo et al., 2015; Bringmann et al., 2015;

Borsboom et al., 2011; Tio, Epskamp, Noordhof, & Borsboom, in press) have been introduced, all

contrasting this new perspective to the latent variable approach. Additionally, several articles not only

conceptually contrast networks with the latent variable model, but also empirically test the necessity

for a network approach. For example, Cramer, Borsboom, et al. (2012) and Fried et al. (2014) tested

whether risk factors for developing depression such as stressful life events directly influenced the

correlation between symptoms, or whether this influence was indirect via a latent variable. They

found that the network model, which assumes that risk factors influence the correlation between

depressive symptoms directly, had a better fit than a latent variable model, concluding that the

former perspective is preferable to the latter.

However, beyond this embracement of the critique of latent variable models, some researchers have

cast doubt on the necessity to counterpose the network perspective to the latent variable approach (see

for example: Ashton & Lee, 2012; Danks, Fancsali, Glymour, & Scheines, 2010; Haig & Vertue, 2010;

Humphry & McGrane, 2010; Krueger, DeYoung, & Markon, 2010; Markus, 2010; McFarland & Malta,

2010; Molenaar, 2010). Comments have been made that the common cause model that Cramer and

colleagues criticize is not a model actually used by personality or psychopathology researchers (Ashton

& Lee, 2012), that the common cause or latent variable model where symptoms or variables are not

allowed to influence each other is a straw man as it is also possible to allow for such influences (Danks

et al., 2010), and that network models and latent variable models are mathematically equivalent

(Molenaar, 2010). In general, it seems that the distinction between theoretical and psychometric

issues has become blurred in this debate. In the next paragraphs, we will try to disentangle the two in

order to get a better understanding of the relationship between latent variable and network models.

The common cause approach

The starting point for the debate on networks and latent variables is the question why symptoms (or

items) of a certain disorder such as depression (a latent construct) tend to covary more with each other

than with symptoms of, for instance, schizophrenia. The dominant answer, according to Borsboom

and Cramer (2013), is that symptoms tend to covary because there is a common cause to them, the

disorder itself. However, according to Borsboom and Cramer (2013) this common cause perspective

to mental disorders is problematic (see also introduction). Cramer and colleagues argue that the

problem of the dominant view lies in its psychometric foundation (the latent variable model), but also

give a conceptual argument: Psychiatric disorders and their symptoms are related as a whole to its

parts, while in a common cause perspective, symptoms are not seen as (part of) the disorder, but

as mere indicators of and caused by the disorder (Cramer et al., 2010). Thus, in the common cause
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approach disorders and their symptoms are implicitly (and mistakenly) assumed to be conceptually

independent or distinct.

This common cause perspective can be, for example, found in research searching for biological

and/or genetic mechanisms of mental diseases (Borsboom & Cramer, 2013; Cramer, van der Sluis,

et al., 2012a). A famous example is the serotonin hypothesis of depression. According to this the-

ory, depression is caused by neurochemical alterations in the nervous system (Lacasse & Leo, 2005).

Following this reasoning, researchers have tried, unsuccessfully, to induce depression by, for example,

depleting serotonin levels (Heninger, Delgado, & Charney, 1996). The general lack of success of this

approach has been assigned to its simplistic nature: the cause of depression cannot be just a simple

neurotransmitter defect, but some more complex biological mechanisms and processes. In studies

such as these, a common cause perspective is implicitly taken, as symptoms are assumed to be caused

by depression, and no special attention is given to specific symptoms nor their interactions, the goal

being to tackle the disorder itself and not merely it symptoms (Patten, 2015).

A common cause perspective seems plausible for diseases such as HIV, where the disorder does

cause symptoms, and can even exist without symptoms. Thus, regarding medical diseases like HIV or

brain tumor, the disease and its symptoms are conceptually distinct. For psychiatric disorders such

as depression, however, the symptoms make up the disorder, as it is implausible that someone could

be diagnosed with depression without any symptoms. Thus, depression and its symptoms seem not

to be conceptually distinct. For this reason, it is incorrect to say that symptoms are caused by the

disorder, just as it is incorrect to state that “being a heavy smoker causes one to smoke 20 cigarettes

a day” (J. Campbell, 2010, p. 70). Following this reasoning, it can be argued that in order to make

progress in understanding psychiatric disorders such as depression, symptoms and their interaction

should be the focus of research, as the disorder is (made up of) its symptoms (Cramer, 2012; Cramer,

van der Sluis, et al., 2012b; Fried, 2015; Fried & Nesse, 2015).

Don’t blame the model

As shown in the previous section, the common cause perspective is a genuine problem in psychological

theorizing, as it conceptualizes psychiatric disorders (and perhaps other psychological constructs) in a

way that seems implausible. Additionally, we pointed out above that the root of this problem can be

traced to the problematic assumption of conceptual distinctiveness, as psychiatric disorders are (com-

posed of) their symptoms and thus cannot be the causes of the symptoms. A reasoning more di�cult

to follow is the psychometric connotation given to this, in essence, conceptual problem. According to

Cramer and colleagues, the common cause hypothesis (or disease model) is wedded to one psychomet-

ric interpretation, namely the latent variable model (see e.g., Cramer et al., 2010; Schmittmann et al.,
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2013). Even more so, the common cause hypothesis commits one to a very restrictive latent variable

model, a factor model that has the assumption of local independence. Moreover, by just applying a

latent variable model with local independence to your data, you implicitly take the common cause

perspective (Cramer, van der Sluis, et al., 2012a). In this way, Cramer and colleagues argue that the

common cause hypothesis and the latent variable model are two sides of the same coin. Additionally, if

one does not assume that a common cause structure gives rise to the covariance between the variables,

then, according to Cramer et al. (2010) a network model is the psychometric model of choice.

Although appealing, this reasoning falls short. As Cramer et al. (2010) argue that taking the

latent variable model automatically leads to the common cause perspective, they interpret latent

variable models as causal models. However, there are other ways of interpreting them. In essence,

a latent variable is a variable that is itself unobserved but is inferred from or operationalized by

observed variables, for example, through a latent variable model (Jöreskog & Goldberger, 1975). Quite

generally, a latent variable model or factor model can be seen as an e�cient way of representing or

capturing correlations in the data. As some variables tend to covary, the latent variable model can be

used to statistically summarize this covariance by the factor(s) of the model (Jonas & Markon, 2016).

Thus, the theoretical interpretation of the covariance between the variables and the factor itself is up

to the researcher, and not something the statistical model itself can “tell” (Borsboom, Mellenbergh, &

Van Heerden, 2003, p. 206). One can apply a latent variable model without necessarily assuming that

the factor is causing the observed variables. Therefore, the claim that using the latent variable model

automatically leads to the common cause perspective is not warranted, as one can also interpret a

latent variable model as a parsimonious representation of the covariance matrix.

Moreover, even if you interpret latent variable models causally, this does not necessarily lead to

the common cause perspective as defined by Cramer and colleagues. As pointed out also by Cramer

and colleagues, a restrictive latent variable model assuming local independence appears in directed

acyclic graphs when there is an unobserved common cause in the graph (Cramer, van der Sluis, et

al., 2012a; Pearl, 2000). A standard example is a model with two observed variables: having a cough

and having yellow finger nails. These two variables are correlated, but not because they are causally

connected. The correlation is due to an unobserved common cause: smoking. In the same vein,

consider the ancestral graphs that were discussed in chapter 6. In this framework, a bidirectional

arrow is an indication of a missing variable not taken into account in the network, in other words an

unobserved (latent) common cause. However, in the context of causal graphs, the latent variable is not

given or described beforehand, but is simply some unknown and unobserved variable. In the common

cause perspective as characterized by Cramer and colleagues, the latent variable that accounts for the

correlations between observed variables (symptoms) is already a priori assumed to be the psychiatric

disorder. Thus, the way in which the latent variable model is applied is very di↵erent in these two
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contexts (see also Bollen, 2002). In the common cause perspective, it is intended to represent a

predefined cause (the disorder), while in the context of causal modeling, it indicates the presence of an

unknown cause or variable(s) that is not included in the model. For this reason, applying a causally

interpreted latent variable model does not as such lead to the common cause perspective, which is an

additional and independent conceptual assumption.

Furthermore, you can also make the problematic assumptions of the common cause perspective

when not using a latent variable model, but for example a network model. According to Cramer

and colleagues, one important aspect of the common cause perspective is that the focus is on the

underlying “disorder itself” instead of symptoms and their interactions (Borsboom & Cramer, 2013,

p. 92). However, taking again the example of major depressive disorder, one could also construct

the following simple network with three nodes: 1) sum score of a depression scale (e.g., BDI-II) that

characterizes the severity of depression for an individual, 2) genes that code for serotonin, and 3)

brain areas in which serotonin pathways are thought to be located. Moreover, let us assume that all

nodes are connected, and thus some kind of interaction is apparent between all the nodes. Following

the serotonin example of the previous section, one could then based on the network edges make a

statement such as “depression is more likely to happen when certain serotonin genes are present”.

According to Cramer and colleagues, when “correlating latent variables (by their sum score proxy)

with all sort of (non-)biological phenomena . . . [one does] grant the latent variable a status that comes

undeniably close to reification” (Cramer, van der Sluis, et al., 2012a, p. 453). Thus, here we have a

network model that also includes the ”disorder itself” as a real component and implicitly assumes a

central aspect of the common cause perspective that Cramer and colleagues criticize.

In general, the argumentation of Cramer and colleagues results in confusion as it does not separate

the conceptual (common cause hypothesis as the conceptual distinctiveness hypothesis) from the

psychometric (common causes in latent variable, graph and network models). Consider, for example,

the following statement: “In a strict psychometric sense, a latent variable model does not allow for

many direct relations since the majority of covariance between symptoms needs to be explained by the

common cause” (Cramer et al., 2010, p.139). However, the reason why these direct relations between

the variables are not allowed seems to be a conceptual rather than a psychometric reason. Indeed,

Cramer and colleagues point out that “. . . technically [it is] not a problem to fit a one-factor model in

which certain items are allowed to correlate, in addition to and independent of the relation that they

share via the latent factor” (Cramer, van der Sluis, et al., 2012a, p. 452). The problem according

to them is that “the more such correlations are allowed to exist in the model, the less convincing is

the case for an underlying trait that explains the majority of covariance between the items” (ibid.).

In other words, if you are a true believer in the the common cause perspective, you would, according

to Cramer and colleagues, expect a strict one-factor model with conditional independence to hold.
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However, you are technically, statistically and psychometrically allowed to include direct relationships

between symptoms in your latent variable model (Danks et al., 2010). It is just not in line with the

conceptual idea that depression is really the cause of its symptoms and that the symptoms are mere

indicators of depression.

Conclusion

First of all, Cramer and colleagues have pointed out an important conceptual problem that deserves

more research: The common cause hypothesis or rather the conceptual distinctiveness assumption.

With this in mind, we should be aware that psychiatric disorders are likely to be conceptually di↵erent

from medical diseases.1 Second, it was shown that this kind of problematic thinking about psychiatric

disorders (i.e., the conceptual distinctiveness problem) is not a problem of using latent variable models

as such. Therefore, latent variable models, even restrained ones assuming local independence, do not

have to be shunned. Even more so, latent variable models are mathematically equivalent to network

models, in the sense that they have an equal number of free parameters and goodness of fit to the data

(Molenaar, van Rijn, & Hamaker, 2007; Molenaar, 2010; Epskamp, Maris, Waldorp, & Borsboom, in

press). For example, a one-factor model can be transformed to a mathematically equivalent network

where the edges represent regression relationships between the observed variables and the latent

variable is transformed out of the network (Molenaar et al., 2007, p. 189).

Based on the considerations above, it is not useful or necessary to pit latent variable models against

network models, for example trying to empirically find out whether the disease model or the network

model fits the data better. Instead, the focus should be on how the variables you are interested in

can be modeled in a sound way. If you are, as is the case here, interested in modeling the interaction

between variables or symptoms, you should not shun the use of latent variable models, but incorporate

them in a network model. In a symptom network, there is likely to be overlap between variables: for

example, one might question how conceptually distinct the BDI items fatigue and lack of energy

really are. Furthermore, it is plausible that measurement error occurs when measuring the variables

(Markus, 2010; Molenaar, 2010). Using latent variable models can lead to reduction of symptom

variables where necessary, while at the same time controlling for measurement error (McFarland &

Malta, 2010).2

1However, even for medical disorders, where it assumed that the common cause perspective is warranted, it is not
clear that interactions between the symptoms or even interactions from the symptoms to the disease itself are irrelevant
or spurious. For example, even though treating cancer completely would likely lead to the vanishing of the symptoms, the
symptom interaction might still have relevance on its own, as it could influence (e.g., worsen) the recovery from cancer.
For instance, if the interaction between fatigue and fever (two possible symptoms of cancer) is ignored, and the patient is
not getting enough rest, the cancer might worsen as the immune system gets weaker. In this sense, symptom interaction
also in medical disorders is not something that can be ignored, which makes the conceptual di↵erence between medical
and psychiatric diseases again more blurry and in need of further research.

2Such models are similar to dynamic factor models, which have already been successfully used in the literature (e.g.,
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Finally, the rationale for using network models in psychopathology, emotion or personality research

does not seem that di↵erent from other fields of science. We do not need networks because there has

to be an alternative to latent variable models, but because we are interested in the interaction between

variables, and network models are a useful tool for studying this.

8.2 VAR: Very Awful Regressions?

Although the network approach in general is very appealing and plausible, in practice a network is

only as good as the model it is based on. In this thesis, the VAR model is used to infer most networks.

Thus, in order to determine whether the networks presented in this thesis are more than just pretty

visualizations, we will now take a critical look at the VAR model. VAR models have their origin in

econometrics, and have not been uncontroversial there. For example, Harvey (1997, p. 199) claims:

“To many econometricians, VAR stands for ‘Very Awful Regression’.”

Before the use of VAR models took o↵, structural simultaneous equations models were the stan-

dard. In simultaneous equation systems left-hand side variables can also appear as right-hand side

variables in other equations of the system (Brandt & Williams, 2007). Thus, there is instantaneous

feedback from the output side of the system to the input side. As this system is not identified, re-

searchers must place a “structure” or a priori restrictions on the system inspired by theory, for example,

removing instantaneous feedback in the system by specifying upfront that some of the coe�cients are

zero (see Kennedy, 2003, Chapter 11).

An example of such a model is the structural equation form of VAR (SVAR) (Brandt & Williams,

2007):

y1,t = g10 � a12y2,t + �11y1,t�1 + �12y2,t�1 + u1,t (8.1)

y2,t = g20 � a21y1,t + �21y1,t�1 + �22y2,t�1 + u2,t (8.2)

In a SVAR model, the variables (y1,t, y2,t) are not only specified by their temporal dynamics

(regressed on their lagged values y1,t�1, y2,t�1 respectively), but also contemporaneous dynamics are

modeled (through the coe�cients a). This creates instantaneous feedback as y2,t is determined by

y1,t and vice versa, and thus a priori restrictions are needed to identify the system. Contrary to

the innovations in a VAR model, the innovations in a SVAR model are not allowed to be correlated

across equations, in other words, contemporaneously correlated. Note furthermore that due to the

inclusion of contemporaneous e↵ects, the parameters representing the intercept (g), lagged e↵ects (�)

and innovations (u) have a di↵erent interpretation as in the standard VAR equations 1.1 and 1.2.

Molenaar, 1987; Ferrer, Widaman, Card, Selig, & Little, 2008).
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Structural models were criticized by, for example, Sims (1980), who claimed that the restrictions

to identify such models are incredible and inappropriate. He found support in the fact that such

theoretical structural models were out-forecasted by atheoretical models or reduced form models such

as the univariate form of VAR (i.e., AR; Kennedy, 2003). Therefore, Sims advocated the standard VAR

model, which can be seen as the reduced form of a SVARmodel. In the standard or reduced VARmodel

used in this thesis, no a priori restrictions are necessary as only lagged e↵ects are included, banning

the contemporaneous e↵ects to the innovation matrix. As we often do not know beforehand which

variables are important to understand a certain process, Sims suggested including all possibly relevant

variables and as many lags as possible. This leads to an overparameterized VAR, creating inevitably

multicollinearity between the regressors, and therefore it is advised to pare down the model through

model selection. Note that as the reduced form has always less model parameters (no contemporaneous

e↵ects) than the SVAR model, there is no one to one mapping between the structural and the reduced

model. Instead, a VAR model is mathematically equivalent to multiple SVAR models (Brandt &

Williams, 2007).

Besides its a-theoretical nature, most of the controversy related to the VAR model arises from the

di�culties of interpreting its parameters. Probably the start of the confusion was the invention of

Granger causality, which can be empirically tested in a VAR model. Granger causality is a data driven

approach and starts with the Hume inspired notion that causes must precede their e↵ects, implying

that time is essential when studying causality (Granger, 1969; Hoover, 1993). Granger causality can

be characterized as follows: Variable X is a Granger-cause of variable Y exactly when prediction

of Y at time t is improved by taking into account all past values of X, in addition to all other past

information (Kennedy, 2003, p.63). Aside from the problem that it is impracticable to have all relevant

past information included in a VAR model, Granger causality is not su�cient to infer causality. For

example, Christmas shopping is likely to Granger-cause or predict Christmas very accurately, but this

does not mean that Christmas shopping causes Christmas. Even when nobody would do any shopping,

Christmas would still arrive. Thus, in the best case, Granger causality just implies predictability or

precedence, which quite possibly has little to do with causality (Leamer, 1985).

Furthermore, in economics and also in psychology, a lot of voices have been raised to addition-

ally study contemporaneous e↵ects and contemporaneous causality. Contemporaneous e↵ects and

especially contemporaneous causality as it is represented in a SVAR model were seen by Granger as

artefacts and unreal as causality is, according to Granger, a temporal notion. The seemingly contem-

poraneous or instantaneous causality would disappear if there were no omitted causal variables, or

if the relevant variables were measured continuously or near continuously (Hoover, 1993). However,

often such continuous data is not available, and some variables, such as alcohol consumption, are

simply not continuous processes, making it unlikely that contemporaneous e↵ects can be ruled out in
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economics and psychology.

Unfortunately, even though SVAR and VAR are mathematically equivalent, they have a very di↵er-

ent physical interpretation (Lütkepohl, 2007, p. 48). Thus, if one assumes that the contemporaneous

e↵ects have to be explicitly modeled, a VAR model is merely a starting point, and again identification

restrictions on the error structure are necessary, which require some sort of theory. Sims, for example,

suggested all kinds of statistical tricks such as orthogonalization of the innovations (e.g., a Choleski

decomposition) to get from a VAR model to a SVAR model, ironically bringing back the “incredible

identification restrictions” he had criticized before (Kennedy, 2003, p. 306).

To circumvent the issue of problematic identification restrictions, data driven methods to estimate

SVAR models have been recently developed. In fMRI research, the Group Iterative Multiple Model Es-

timation (GIMME) has been developed, using Structural Equation Modeling techniques and modeling

both contemporaneous and lagged e↵ects (Gates & Molenaar, 2012). This method has been recently

extended to be also applicable to, for example, daily diary data (Beltz, Wright, Sprague, & Molenaar,

in press). In econometrics, a graph-theoretic approach, similar to the method in Chapter 6 of this

thesis, is used to infer a SVAR model (Hoover, 2005). Graph theory uses mathematical techniques to

draw conclusions based on the probability distributions of variables. For example, graph theory can be

used to determine if variables A and B are directly related or whether they are actually independent

given a third variable C, a common cause (Pearl, 2000; see also the example on common causes in the

previous section). In essence, graph theory uses simple relationships of probabilistic dependence and

independence, and interestingly time is often not taken into account to infer the direction of edges

in the graph. When applied to the SVAR method, first a VAR model is estimated and then a graph

theory algorithm is used to find the best fitting SVAR model in a data driven way (Hoover, 2005).

Besides the issue of whether a VAR or SVAR model is preferable, other issues has been raised that

are problematic for the interpretation of the VAR models currently used in psychological research. For

example, although it is advised to use a large number of variables in a VAR model, as is done in network

research, there is still a lack of model selection afterwards, leaving the model overparameterized. Using

techniques to pare down the model with Least Absolute Shrinkage and Selection Operator (LASSO)

methods would be a step forward (Tibshirani, 1996). Paring down the model, however, is likely

not without problems, as it is suggested in the econometric literature that the standard ordinary

least square method used in this thesis can only be applied when the right hand side of every VAR

equation contains the same lagged variables (Enders, 2008). This suggests that in order to select

more parsimonious models, di↵erent techniques such as Bayesian or SEM based (multilevel) VAR

techniques, in which equations can be estimated simultaneously, may be required (Gates & Molenaar,

2012; Schuurman et al., in press).

Furthermore, in order to compare edges in the network and between networks, several issues need
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to be taken into account: standardization, measurement error and unique versus shared variance. If,

for example, measurement error is not accounted for, edges might be underestimated or overestimated

(Cooley & LeRoy, 1985; Schuurman et al., 2015). All of these issues have been mentioned before in

this thesis and progress has been made in order to resolve them (Bulteel et al., in press; Schuurman

et al., 2015, 2016), but as most of these techniques are still fairly new or under development, these

issues are not always accounted for in practice.

Another important goal in the network analyses of this thesis has been to unite idiographic and

nomothetic approaches (Molenaar, 2004; Nesselroade & Molenaar, 2010; Steele, Ferrer, & Nesselroade,

2013). On the one hand, progress has been made by developing a multilevel VAR model in which

individual and group e↵ects can be modeled at once. However, a multilevel VAR model is still

quite restrictive, as the individual (random) e↵ects are assumed to come from a multivariate normal

distribution. This might not always be a plausible assumption. In Chapter 5, for example, it was

shown that individual di↵erences in temporal dynamics can become quite complicated as the process

under study might be non-stationary, and thus the di↵erences in dynamics between individuals also

occur over time. In this case, just one variable (valence) was taken into account, but in networks where

sometimes 21 variables are studied, the di↵erences between individuals, especially when the process

under study is non-stationary, might be much larger than what we find when fitting a restrictive

multilevel VAR model to the data. A solution would be to fit a (time-varying) VAR model for

every individual to get an estimate of the di↵erences between individuals and to see if a (stationary)

multivariate normal distribution is tenable (see also Molenaar, Beltz, Gates, & Wilson, 2016). Another

option would be to use a multilevel VAR model with a non-parametric distribution for the random

e↵ects, or the GIMME approach, in which individual and a group networks are made without assuming

a specific distribution for individual networks (Beltz et al., in press).

In the end, VAR models seem to be not that awful at all. Indeed, causal interpretation is something

one should stay far from, but this problem is not restricted to the VAR model. With just observational

data and without a developed theory, no model, including the SVAR model, will give you a reliable

causal interpretation of the mechanism under study. Econometricians do agree that VAR models can

be used for prediction (Cooley & LeRoy, 1985; Harvey, 1997; Leamer, 1985) and that is something

that can be useful for psychologists too. Although you might find relations like Christmas shopping

predicting Christmas, or spurious relations due to missing variables or a misspecification of the model,

a VAR model can be a starting point for generating and testing hypotheses. Following from this, it is

important to not only make more advanced and complex modeling techniques, but to also try to gather

experimental data. As the world is becoming full of new techniques like smart phones, continuous

streaming of individuals’ lives should not be a too far o↵ possibility. In this way, natural experiments

(e.g., when somebody receives bad news) could be captured immediately. In general, we should go
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back to studying simpler processes on which we already have good intuitions or developed theories

(see also Chapter 7 of this thesis), and try to develop real life experiments in order to learn about

causality and the interpretation of our models.

8.3 Dynamical networks in psychology: More than a pretty

picture?

A conclusion that follows from the previous sections is that the VAR model can be a fruitful basis for

constructing networks. The question that is left then is whether these networks are something beyond

the visualization of the parameters of a VAR model. First of all, we should realize from the first part

of the discussion that, as with any model, network models are not always the answer. Networks are

often simple and powerful representations, and this abstraction, where not everything is and can be

visualized, is both a virtue and a vice. Considering the dynamic networks studied in this thesis, it

can be noticed that the intercept and the mean of a VAR model were not visualized in the networks.

In general, the mean does not find its way into network representations as the idea behind a network

approach is to zoom in on the interaction between variables. It is this focus on interaction, however,

that is not always necessary, as sometimes the answer to a problem lies in changes in the mean or in

the individual elements of a network.

That a network model is not always the answer to a problem can be seen in the work of Duijn et al.

(2014). These researchers studied the disruption of criminal networks and showed, interestingly, that

to break down such networks a network model as such was not necessary. Instead of analyzing the

interaction between criminals or variables, studying the “substitutability” of an individual criminal

was the e↵ective method to disrupt the criminal network, because the most specialized criminals were

the most di�cult to substitute once removed from the network. As the interaction between nodes

or criminals was not crucial here, a network approach was not necessary to influence the system.

Similarly in psychology, to help patients in practice, a network model may sometimes be unnecessary,

as the plain increase of a certain symptom might already give enough valuable information to help

and treat individuals with a disorder. For example, in elderly individuals, just the symptom sleep

disturbance seems to be a good and simple predictor of a full blown depression (Livingston, Blizard,

& Mann, 1993).

Assuming that the interaction between variables is relevant for solving the research question of

interest, one might still wonder if a network model is anything more than a visualization of, in this

case, the parameters of a VAR model. Indeed, one could argue that it goes beyond visualization,

as now network analyses such as centrality analyses have become a part of our statistical toolbox.

However, some network analyses, especially the centrality analyses, seem to be rather instable and a
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good interpretation of them is still lacking. For example, in Chapter 2 betweenness centrality analyses

regarding worry and neuroticism could not be replicated and in Chapter 3 many of the centrality

analyses did not replicate in both datasets. Furthermore, centrality measures such as out-strength

are interpreted according to how they are used in social networks, but it is not at all clear if a high

out-strength (or any other centrality measure) can be interpreted in the same way in psychology,

especially since the parameters they are based on are already di�cult to interpret without the context

of a network.

Moreover, even in social networks centrality measures cannot always be interpreted as initially

thought of. Consider again the research on criminal networks (Duijn et al., 2014). In these networks,

nodes (or criminals) with the highest centrality were not the criminals with the most influence nor the

most important ones, and thus attacking the most central criminal did not lead to a disruption of the

network (Duijn et al., 2014; Firmani, Italiano, & Laura, 2014). Interpretations of centrality measures

in psychological networks are further complicated by the fact that we do not know for sure if the nodes

are really distinct entities, as in social networks, where individuals are a priori distinguishable. Thus,

before these issues are addressed, the use of centrality analyses in especially clinical psychological

networks seems problematic.

What appear to be more robust are the global or overall measures such as the density analyses

done in Chapter 3. Although also not entirely unproblematic, it seems that there is a clear idea

of how to interpret the density measure, and there are already some simple and plausible theories

behind it which can be directly tested. One example is the theory that individuals with depression get

more stuck in negative emotions, and therefore have stronger connections or predictability between

emotions over time (Pe et al., 2015). The visualization is in this case also a very powerful tool to get

a better grip on the theoretical idea. Density analysis thus seems to be a promising line of research

that has been directly inspired by the network approach and can be further tested.

So are dynamical networks in psychology more than a pretty picture? They have opened up a

whole new research paradigm, generating new questions and ideas. However, the importance of the

kind of networks used in this thesis should not be overestimated: as is clear from the above, the

VAR model they rely on is not without flaws, even though progress has been made in this thesis

regarding extensions of VAR models. Furthermore, the network approach should not become a chant,

as sometimes putting variables in a network and looking at their interactions is unnecessary and only

leads to extra complications. So yes, dynamical networks are arguably more than just a pretty picture,

even though the real proof is yet to come.
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